
Residential Development at Roebuck Road, Clonskeagh, Dublin 14

Engineering Services Report

210013-DBFL-XX-XX-RP-C-0002

Y A A

MAY 2021

Project Title:	Residential Development at Roebuck Road, Clonskeagh, Dublin 14		lonskeagh, Dublin 14
Document Title:	Engineering Services Report		
File Ref:	210013-DBFL-XX-XX-RP-C-0002	rev:	P01

Rev.	Status	Date	Description	Prepared	Reviewed	Approved
P01	S2 - For Information	31/05/21	For Planning	Ryan Parkes	Laura Mcloughlin	Sarah Curran

Disclaimer

This specification has been prepared for the exclusive use of our Client and unless otherwise agreed in writing by the Designer no other party may use, make use of or rely on the contents of this specification.

The specification has been compiled using the resources agreed with the Client and in accordance with the scope of work agreed with the Client. No liability is accepted by The Designer for any use of this specification, other than the purpose for which it was prepared.

The Designer accepts no responsibility for any documents or information supplied to the Designer by others and no legal liability arising from the use by others of opinions or data contained in this specification. It is expressly stated that no independent verification of any documents or information supplied by others has been made.

The Designer has used reasonable skill, care and diligence in compiling this specification and no warranty is provided as to the report's accuracy.

	Dublin Office	Cork Office	Waterford Office
	Ormond House Upper Ormond Quay Dublin 7 D07 W704 Ireland	14 South Mall Cork T12 CT91 Ireland	Suite 8b, The Atrium Maritana Gate, Canada Street Waterford X91 W028 Ireland
DBFL CONSULTING ENGINEERS	+353 1 400 4000 info@dbfl.ie www.dbfl.ie	+353 21 202 4538 info@dbfl.ie www.dbfl.ie	+353 51 309 500 info@dbfl.ie www.dbfl.ie

Contents

1	Int	roduc	tion²	1
2	Fo	ul Sev	vers	5
	2.1	Exist	ing Services	5
	2.2	Prop	osed Services	5
3	Su		Water	
	3.1	Exist	ing Services	7
	3.2		osed Services	
	3.3	Sust	ainable Drainage Systems (SuDS)	7
	3.3	3.1	Permissible Site Discharge)
	3.3	3.2	Surface Water Runoff Coefficients)
	3.3	3.3	Surface Water Attenuation)
	3.3	3.4	Interception Volume 11	L
	3.3	3.5	Treatment Volume	2
	3.3		Surface Water Sewers	
4	Wa	aterma	ains14	1
	4.1	Exist	ing Services14	1
	4.2	Prop	osed Services14	1

Appendix A - Existing Irish Water Services Records

- Appendix B Foul Sewerage Calculations
- Appendix C Permeable Paving Calculations
- Appendix D Filter Drains Calculations
- Appendix E SUDs Summary Calculations
- Appendix F Permissbale Site Discharge Calculations
- Appendix G Surface Water Attenuation Calculations
- Appendix H Interception Volume Requirements
- Appendix I Treatment Volume Requirements
- Appendix J Water Demand Calculations

1 Introduction

DBFL Consulting Engineers were commissioned by the Applicant, Dun Laoghaire-Rathdown County Council (DLRCC), to prepare an Engineering Services Report (ESR) for the proposed residential development at the junction of White Oaks and Roebuck Road, Clonskeagh, Dublin 14.

The application site is a brownfield site, comprises approximately of 0.068 hectares and has been used in recent years as a car park – see Figure 1 below.

The site is bordered to the northwest by an open watercourse and residential development, to the south by the White Oaks Tudor Homes residential development and to the southeast by White Oaks Road and a car wash. The site is bordered to the northeast by Roebuck Road (R825) and has vehicular access from White Oaks on its south eastern border.

The existing site slopes at an approximate gradient of 1:65 from southwest to northeast with the Dodder River located approximately 1.0km to the northwest of the site and the Irish Sea approximately 2.4km to the east.

Figure 1: Site Location, Roebuck Road, Clonskeagh, Dublin 14

The proposed residential development consists of 4 no. housing units within a 3 storey development on the site.

The associated site and infrastructural works include watermains, foul and surface water drainage, parking facilities, permeable paving, bin store, landscaping, boundary walls and fences.

The objective of this report is to provide information on the calculations, estimates and assumptions used to design the foul sewers, surface water sewers, surface water attenuation and Sustainable Drainage Systems (SuDS), watermains and road access for the proposed development.

2 Foul Sewers

2.1 Existing Services

The site currently exists as a small car park. There is no foul infrastructure located within the boundary of the proposed site.

See Appendix A for the Existing Irish Water Records.

2.2 **Proposed Services**

Foul sewage within the site will be drained via individual inspection chambers at each dwelling to a proposed 150mm diameter foul sewer which will traverse the site and exit across the eastern boundary to discharge into the existing foul sewer located within White Oaks Lane.

Refer to drawing 210013-DBFL-CS-SP-DR-C-1001 for details of the proposed foul sewer network.

Foul sewers have been designed and will be constructed in accordance with the Irish Water's 'Standard Details for wastewater infrastructure' and 'Code of practice for wastewater infrastructure'. In addition, foul sewers have been designed to Building Regulations and specifically in accordance with the principles and methods set out in EN 752:2008 and DOE '*Recommendations for Site Development Works'*. In addition, HR Wallingford 'Tables for the hydraulic design of pipes, sewers and channels' and Water UK/WRc 'Sewers for Adoption – 6th Edition' have been applied. Values for roughness of uPVC pipes were obtained from Wallingford "Tables for the Hydraulic Design of Pipes, Sewers and Channels" and Wavinsewer systems catalogue.

Using Irish Water parameters, the peak flow from the site is calculated as 0.124 l/s. The following minimum gradients were used:

No. of Houses	Minimum Pipe Gradient
1	100mm dia. @ 1:60 or self-cleansing gradient (private connection)
2-9	150mm dia. @ 1:60 or self-cleansing gradient
>10	Min 150mm dia. or self-cleansing gradient

Sewers and drains shall be laid to comply with the requirements of the Building Regulations 1997 in accordance with the recommendations contained in the Technical Guidance Documents, Section H (revised 2005). Standard drainage details will be in accordance with the Greater Dublin Regional Code of Practice for Drainage Works and Irish Water Standard Details for Wastewater infrastructure.

See Appendix B for the Foul Sewerage calculations.

Refer to drawing number 210013-DBFL-CS-SP-DR-C-1001 for Proposed Foul Sewer Layout.

3 Surface Water

3.1 Existing Services

Irish water existing drainage records show that there may be an existing 225mm diameter stormwater connection at the northern boundary of the proposed site. More survey information will be required to determine the origin of this connection but it is thought to service the previous brownfield site. All redundant surface water infrastructure that may be located within the site boundary will be investigated and removed. There is an existing open watercourse that runs along the rear of the site, and existing 225mm diameter public surface water sewers located on Roebuck Road northeast of the site and White Oaks Lane located to the southeast of the proposed site.

Refer to Appendix A for existing Irish Water records.

3.2 Proposed Services

Surface water management for the proposed development is designed to comply with the 'Greater Dublin Strategic Drainage Study (GDSDS) Regional Drainage Policies Technical Document – Volume 2, New Developments, 2005' and the 'Greater Dublin Regional Code of Practice for Drainage Works, V6.0 2005'. CIRIA Design Manuals C753, C697 and C609 have also been used to design the surface water drainage system within the site.

The GDSDS guidelines require the following 4 main criteria to be provided by the development's surface water design;

- Criterion 1: River Water Quality Protection satisfied by providing interception storage and treatment of run-off within the SuDS features e.g. permeable paving and filter drains.
- Criterion 2: River Regime Protection satisfied by attenuating run-off with flow control device prior to discharge to the existing surface water manhole in White Oaks Lane.
- Criterion 3: Level of Service (flooding) for the site satisfied by the site being outside the 1000 year coastal and fluvial flood levels. Pluvial flood risk addressed by development designed to accommodate a 100-year storm (plus climate change) as per GDSDS. Planned flood routing for storms greater than 100-year level considered in the design and development run-off contained within site.
- Criterion 4: River flood protection attenuation provided within the SuDS features e.g. permeable paving construction and filter drains.

3.3 Sustainable Drainage Systems (SuDS)

It is proposed to use a sustainable urban drainage system (SuDS) approach to stormwater management throughout the site. The overall strategy aims to provide an effective system to mitigate the adverse effects of urban stormwater runoff on the environment by reducing runoff rates, volumes and frequency, reducing pollutant concentrations in stormwater, contributing to amenity, aesthetics and biodiversity enhancement and allow for the maximum collection of rainwater for re-use where possible. In addition, 210013-DBFL-XX-XX-RP-C-0002

SuDS features aim to replicate the natural characteristics of rainfall runoff for any site by providing control of run-off at source and this has been achieved by the current proposals.

SuDS are a requirement of 'The Greater Dublin Strategic Drainage Study' and are recommended under the 2009 guidelines, 'The Planning System and Flood Risk Management'.

There are a number of SuDS features proposed which have been designed in accordance with CIRIA documents C753, C697 and C609 as follows:

- Permeable Pavers: Porous surfacing (paving block or open graded material) which can treat rainwater at source, and allow infiltration through to an underlying porous subbase where water can be stored within the voids before being slowly released to the drainage collection system through natural flow via the porous medium. These systems will allow some form of storage for small rainfall events and will result in interception, water evaporation and adsorption in small quantities, therefor there will be less runoff from these areas in small rainfall event thus mimicking the natural response for this catchment. As well as reducing the amount of runoff from the surface, permeable paving will slow down the rate of runoff from the pavement in extreme rainfall events contributing to attenuation flows. In addition, permeable paving will increase the quality of water which is intercepted by the system through filtration, biodegradation, pollutant adsorption and settlement and retention of solids, also the reduction in peak flows to the outfall will enhance settlement and biodegradation of pollutants.
- Filter Drains: Trenches filled with permeable stone material and a perforated collection pipe at
 the invert with an optional permeable 'sandy' topsoil at surface. These can treat, convey and
 attenuate runoff, at source, and can infiltrate to the ground where the subgrade is suitable.
 These systems will allow some form of storage for small rainfall events and can result in water
 evaporation and adsorption in small quantities, therefore there will be less run-off from these
 areas in small rainfall events thus mimicking the natural response for this catchment. These will
 be located in the rear-gardens of each unit and will result in an improvement in the quality of
 surface water draining from roofs of houses and paved areas in rear gardens and will also allow
 groundwater to recharge to its natural state.

See Appendix C for the Permeable Paving calculations

See Appendix D for the Filter Drain calculations

See Appendix E for the SUDs Summary calculations

Refer to drawing number 210013-DBFL-CS-SP-DR-C-1001 for Proposed Surface Water Layout.

3.3.1 Permissible Site Discharge

According to the GDSDS, the method used for determining peak flow rates for small greenfield catchments is the UK 'Institute of Hydrology Report 124, Flood Estimation for Small Catchments'. This method calculates QBAR_{rural} which is the mean annual flood flow from a rural catchment.

Where long-term storage can be provided or is not necessary, surface water can be discharged at a higher value than QBAR_{rural}, this discharge rate (QBAR_{growth}) is dependent on the design return period and the corresponding growth factor from the GDSDS Table 6.6. However, if long-term storage cannot be provided on-site the discharge rate from the site should be kept to QBAR_{rural} or 2 l/s/ha. This is the case for this proposed development.

The IH124 method calculates $QBAR_{rural}$ which is the mean annual flood flow from a rural catchment. As the subject site area is less than 50 hectares, the calculated QBAR is to be linearly interpolated from the calculated value to produce a reduced allowable outflow based on the actual site area, as per GDSDS section 6.6.1.

QBAR_{rural} = 0.00108 x (Area)^{0.89}(SAAR)^{1.17}(SOIL)^{2.17}

where:-

QBAR_{rural} = Mean Annual Flood (m³/s) Area = Catchment Area (km²) SAAR = Standard Average Annual Rainfall (mm) SOIL = SOIL index from Flood Studies Report

Using data received from Met Eireann for Irish Grid co-ordinates E 317000, N 229000 (site co-ordinates are: E 317648, N 229653), the SAAR is determined as 772mm.

The soil value can be determined from the Flood Studies Report - Winter Rainfall Acceptance Maps (WRAP). A more accurate approach is to use the '*The Classification of Soils from Winter Rainfall Acceptance Rate, Flood Studies Report Table 4.5*' to determine soil type and determine the soil value from Table 6.7 from the GDSDS. The latter method is adopted for this site.

Permissible site discharge for the site has been determined as follows:

Total Application Site Area = 0.07 Ha Actual Catchment Area = 0.07 Ha SAAR = 772mm SOIL Value = 0.37 (for soil type 3 from Table 6.7 from the GDSDS)

The calculated permissible site discharge is 0.3l/s.

However, the minimum recommended orifice size for a Hydrobrake is 50mm which is to protect it against blockages over the lifetime of the product. Therefore, the discharge will be raised to 2.0l/s to obtain this minimum orifice size.

See Appendix F for the Permissible Site Discharge calculations.

3.3.2 Surface Water Runoff Coefficients

As a large proportion of runoff is routed through SuDS features these will have an attenuating effect which reduce the rate of stormwater runoff for every rainfall event. Also, SuDS features will reduce the runoff volume through evaporation, transpiration, infiltration and depression storage of the water within each system.

The following runoff coefficients have been applied as follows:

Roofs - Type 1 (Draining to traditional gullies) = 1.00 Roofs - Type 2 (Draining to SuDS features) = 0.75 Roads and Footpaths - Type 1 (Draining to traditional gullies) = 0.95 Roads and Footpaths - Type 2 (Draining to SuDS features) = 0.70 Permeable Paving = 0.70 Grassed Areas = 0.37 (soil type 3 SPR- Flood Studies Report)

3.3.3 Surface Water Attenuation

GDSDS requires flood waters for a 100 year return period to be managed on-site, therefore this return period is adopted for attenuation calculations. Surface water attenuation for the site will be provided within the permeable paving at the front of the development.

In order to ensure that the proposed design provides similar or improved benefits, the design proposal is for the inclusion of traditional roof areas to drain to filter drains located to the rear of the development and to the permeable paving to the front the proposed development. The interception and treatment volumes of the above proposed designs are discussed in greater detail below.

The development drainage infrastructure system, including Sustainable Drainage System features (SuDS) with underground attenuation, will be designed such that the catchment will drain to the open water course to that runs to along the back of the site via an existing drainage network in White Oaks located to the south of the site. Surface water runoff from this catchment will be restricted as noted above.

As required by Dun Laoghaire-Rathdown County Council, a climate change allowance of 20% will be applied to the surface water drainage design.

The hydraulic modelling software system 'MicroDrainage' was used to calculate attenuation volumes, using maximum rainfall data from Extreme Rainfall Return Period values produced by Met Eireann to calculate maximum flood volumes for the 1 in 100 year rainfall event.

Rainfall data for the site was sourced from Annual average Rainfall (AAR) Grid (1981-2010) and a Depth Duration Frequency model produced by Met Eireann (Available from: http://www.met.ie/climate/products03.asp).

SAAR	=	772mm
Ratio M560/M52d	=	0.278
M5/60	=	17.8mm

It should be noted that the attenuation volume required is based on the results of the MICRODRAINAGE hydraulic simulation summary of Critical Results by Maximum Level. Hydrobrake maximum head and discharge is based on results of MICRODRAINAGE hydraulic simulation summary of Critical Results by Maximum Outflow.

Also, it should be noted that within the site, overland flow paths will be provided to direct run-off from high intensity, short duration storms which might fail to enter the drainage system.

The Attenuation Volume was calculated as 4.5m³.

See Appendix G for surface water attenuation calculations.

Refer to drawing number 210013-DBFL-CS-SP-DR-C-1001 for Proposed Surface Water Layout.

3.3.4 Interception Volume

The GDSDS requires that no run-off should directly pass to the receiving watercourse/systems for rainfall depths of 5mm, therefore interception should be provided at source where practicable. The volume of interception required is based on 5mm of rainfall depth from 80% of the runoff from impermeable areas as defined in the GDSDS (Appendix E section E2.1.1).

The interception volume attributable to each SuDS feature consists of the volume of water that can infiltrate to the ground, what will evaporate into the atmosphere and what can transpirate through plants and vegetation. Additionally, there will some losses of water due to absorption and wetting of stone and soil media.

Not all SuDS features will be able to achieve infiltration, evaporation, transpiration and losses due to absorption/wetting. The limits for each SuDS feature type are taken into account when calculating interception volumes.

The interception storage attributable to the losses in stone and soil media, such as the stone media used in filter drains was not included in the calculations.

The total interception volume required (as calculated) for the site is 1.5m³. The volume provided for the site by means of permeable paving is 9.6 m³.

See Appendix H for the Interception Volume Requirement.

Refer to drawing number 210013-DBFL-CS-SP-DR-C-1001 for Proposed Surface Water Layout.

3.3.5 Treatment Volume

The GDSDS requires that a "treatment volume" (Vt) be provided in order to prevent any pollutants or sediments discharging into river systems, additionally a 'treatment train' stormwater runoff management system is required. According to CIRIA document C697 the following treatment train approach is necessary:

Roofs – 1 Treatment Stage

Road Areas - 2 Treatment Stages

Paved Areas excluding Roads - 1 Treatment Stage

The treatment volume required is based on treatment 15mm of rainfall depth from 80% of the runoff from impermeable areas as defined in the GDSDS (Appendix E section E2.1.2).

All run-off areas will pass through the required number of treatment stages prior to discharging to the downstream outfall. Treatment methods include filter drains, permeable paving and silt traps.

The total treatment volume required (as calculated) for the site is 4.6m3. The volume provided for the site by means of permeable paving is 20.2m3.

See Appendix I for the Treatment Volumes Calculations.

Refer to drawing number 210013-DBFL-CS-SP-DR-C-1001 for Proposed Surface Water Layout.

3.3.6 Surface Water Sewers

Surface water from the proposed development will be discharged at a rate of 2.0l/s to the existing open water course to rear of development.

Surface water sewers are designed in MICRODRAINAGE using the Modified Rational Method. The return period for sizing pipes is based on the following;

- Department of Environment Recommendations for Site Development Works for Housing Areas (1998), Table 3.1;
- GDSDS Regional Drainage Policies Volume 2 New Development (2005), Section 6.5;
- IS EN 752:2008 Drain and Sewer Systems Outside Buildings, Table 2;
- Building Regulations (2005) Section H Drainage and Wastewater Disposal, Section 1.5.7.

In addition, the pipe system was checked for the 30year return period where no flooding from manholes was encountered.

The following parameters applied:

Return period	2 year (flooding check for 30 year event)
Time of entry	4 minutes
Pipe Ks	0.6mm (concrete); 0.15mm (uPVC)
Minimum velocity	0.75 m/s
Maximum velocity	3.0 m/s

Effective runoff coefficients for each pipe catchment have been determined based on the runoff characteristics for each surface contributing to flows within the catchment.

The minimum pipe diameter for public surface water sewers is 225mm.

Values for roughness of uPVC pipes were obtained from Wallingford "Tables for the Hydraulic Design of Pipes, Sewers and Channels" and Wavinsewer systems catalogue.

Surface water within the development will drain by way of filter drains and permeable paving into the hydro brake manhole proposed to discharge to the existing surface water manhole in White Oaks Lane.

Refer to drawing number 210013-DBFL-CS-SP-DR-C-1001 for Proposed Surface Water Layout.

4 Watermains

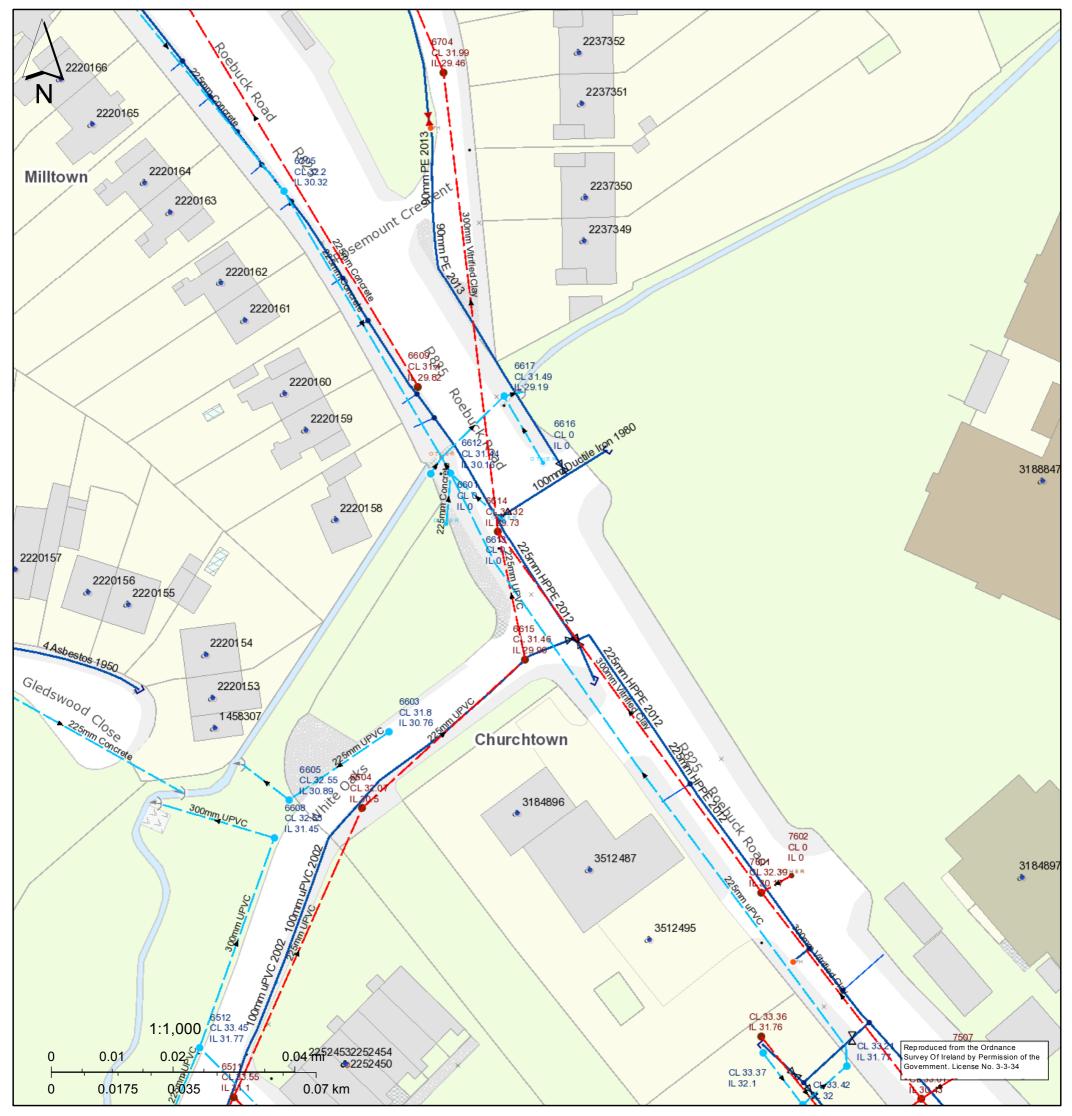
4.1 Existing Services

Existing topographical survey information shows existing watermain infrastructure within Roebuck Road. Further survey information is needed to fully identify the location of existing watermain infrastructure in surrounding the site. The Irish water records show an existing 100mm UPVC line running along the White Oaks Lane and connecting to watermain within Roebuck Road.

4.2 Proposed Services

The estimated peak demand from the development will be 0.117 l/s with the average daily demand being 0.19l/s.

Each unit will join the existing watermain line within the White Oaks Lane individually.


See Appendix J for the water demand calculations.

Refer to drawing number 20016-DBFL-CS-SP-DR-C-1001 for Proposed Watermain Layout.

Appendix A

Existing Irish Water Services Records

Roebuck Road

03/04/2019 12:16:16

© Ordnance Survey Ireland | © Ordnance Survey Ireland |

Legend

Stormwater Gravity Mains (Irish Water Owned)

- Surface

Stormwater Gravity Mains (Non-Irish Water Owned)

- Surface

Storm Manholes

- Cascade
- Catchpit
- <u>. 1</u>. Hatchbox
- Ч Lamphole
- ÷ Standard
- Other; Unknown

Storm Inlets

- Gully
- Standard
- Other; Unknown

Storm Fittings

-

- T Vent/Col
- Other; Unknown
- Storm Discharge Points
 - Outfall
 - Overflow
 - ÷ Soakaway
- Other; Unknown · -
- Storm Culverts
- Storm Clean Outs
- т Storm Network Structures
- Storm System Valves
- Stormwater Weirs
- Storm Open Drains

- Stormwater Chambers
- Kisok
- Storm Casings
- SUDsArea
- Storm Detention Areas

Sewer Gravity Mains (Irish Water owned)

- Combined
- Foul
- Overflow
- --- Unknown
- Storm Water Network Junctions Sewer Gravity Mains (Non-Irish Water owned)
 - Combined
 - Foul
 - Overflow
 - Unknown

Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland. It should not be relied upon in the event of excavations or other works being carried out in the vicinity of the network. The onus is on the parties carrying out the works to ensure the exact location of the network is identified prior to mechanical works being carried out. Service pipes are not generally shown but their presence should be anticipated.

"Gas Networks Ireland (GNI), their affiliates and assigns, accept no responsibility for any information contained in this document concerning location and technical designation of the gas distribution and transmission network ("the Information"). Any representations and warranties express or implied, are excluded to the fullest extent permitted by law. No liability shall be accepted for any loss or damage including, without limitation, direct, indirect, material and the second seco special, incidental, punitive or consequential loss including loss of profits, arising out of or in connection with the use of the Information (including maps or mapping data). NOTE: DIAL BEFORE YOU DIG Phone 1850 427 747 or e-mail dig@gasnetworks.ie - The actual position of the gas/electricity distribution and transmission network must be verified on site before any mechanical excavating takes place. If any mechanical excavation is proposed, hard copy maps must be requested from GNI re gas. All work in the vicinity of the gas distribution and transmission network must be completed in accordance with the current edition of the Health & Safety Authority publication, 'Code of Practice For Avoiding Danger From Underground Services' which is available from the Health and Safety Authority (1890 28 93 89) or can be downloaded free of charge at www.hsa.ie."

Appendix B

Foul Sewer Calculations

	ntial Development at I	Roebuck	Job Reference 210013	
SUBJECT Wastewater Hydraulic Load - Irish Water - Residential			Calc. Sheet No.	
DRAWING NUMBER 210013-DBFL-CS	S-SP-DR-C-1000	Calculations by RSP	Checked by Date LMCL 22.04.21	
Foul Drainage	<u>}</u>			
Housing Units			4 no.	
Dry Weather Flow	/ (DWF) ¹		150 litres/person/day	
Average Occupan	icy Ratio ²		2.7 person/unit	
Fotal Site Occupa	ancy (i.e. population)		11 person	
Total Daily Waste [.] Allowance ³	ewater Discharge + 10	1% Unit Consumption	1,782 l/day	
Peak Flow Factor	4		6.0	
Foul Sewer Orga				
	Average Concentration ⁶	Maximum Concentration ⁷		
BOD (mg/l)	168	422		
SS (mg/l)	163	435		
N (mg/l)	40.6	78.6		
P (mg/l)	7.1	15.5		
COD (mg/l)	389	1000		

from EPA "Wastewater Treatment Manuals, Treatment Systems for Small Communities, Business, Leisure Centres and Hotels".

File: G:\Documents\\210013-Residential Foul-22.04.21.xlsx

Appendix C

Permeable Paving Calculations

TITLE			Job Reference		
Residentia	al Development at Roebuck		210013		
SUBJECT			Calc. Sheet No.		
Permeabl	e Paving Design		1		LEFL
		Calculations by	Checked by	Date	
	BFL-CS-SP-DR-C-1000	RSP	LMCL	22.04.21	
FLAT SIT	ES				
	INPUT DATA				
	Pavement Area (A)		168.0 m ²		
	Pavement Perimeter (P)		<u>0.0</u> m		
	Sub-base Depth (d)		0.400 m		
	¹ Sub-base Voids Ratio (η)		0.30		
	Sub-base Infiltration Rate per hour		1000 mn	n/hr	
	Sub-base Infiltration Rate (k)		0.278 mn	n/s	
	Subgrade Infiltration Rate per hour		5.0 mn	n/hr	
	Subgrade Infiltration Rate (f)		0.001 mn	n/s	
	VOLUME (STORAGE AND TREATMENT)				
	Permeable Paving Storage Volume per m ²		0.120 m ³	/m ²	
	Total Permeable Paving Treatment Volume		20.2 m ³		
	INFILTRATION / INTERCEPTION VOLUME				
	Approx. Permeable Paving Infiltration per m ²		0.001 l/s/	m ²	
	² Total Permeable Paving Infiltration Rate		0.233 l/s		
	³ Additional Reservoir Storage below Outlet Inv		0.005 m		
	⁴ Total Permeable Paving Interception Volur	ne	9.6 m ³		
<u>FLOW</u>					
	Average Distance between Outlet Drains		6.0 m		
	Flow Velocity through Permeable Paving		0.000038 m/s	5	
	Trench Retention Time		44.2 hr		

TITLE Residential Development at Roebuck		Job Reference 210013		
SUBJECT Permeable Paving Design		Calc. Sheet No. 1		
DRAWING NUMBER 210013-DBFL-CS-SP-DR-C-1000	Calculations by RSP	Checked by LMCL	Date 22.04.21	

Notes:

1 Sub-base material has a void ratio of approximately 30%, source 'BRE Digest 365'.

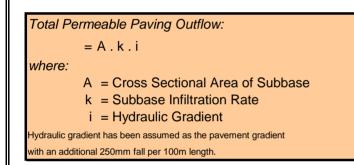
2 Wetted perimeter assuming 50% of trench depth, source 'BRE Digest 365'.

3 Volume of reservoir for total permeable paving area infiltrates to ground over 18 hours

4 Volume calculated using 6 hour storm event.

5 For Paving on slopes includes infiltration, provide 500mmx500mm trenches at 10m centres along slope with 1000mmx500mm at base of slope.

source 'Formpave - Aquaflow Permeable Paving System'.


Table: 1

Material	void Ratio, η		
Clean stone	0.40 - 0.50		
Uniform gravel	0.30 - 0.40		
Graded sand or gravel	0.20 - 0.30		
Source: The SUDS manual, P	Source: The SUDS manual, Published by CIRIA.		

Table: 2

Pavement Type	Effective Depth (m)
Car-Parking	0.40
Footpath	0.20

Effective Depths are provided from source 'Formpave -Aquaflow Permeable Paving System' and may subject to change as per site requirement.

Material	Infiltration Rate (m/hr)
iravel	10 - 1000
and	0.1 - 100
oamy sand	0.01 - 1
andy loam	0.05 - 0.5
oam	0.001 - 0.1
ilt Ioam	0.0005 - 0.005
halk	0.001 - 100
andy clay loam	0.001 - 0.01
ilty clay loam	0.00005 - 0.005
lay	< 0.0001
ill	0.00001 - 0.01
ock	0.00001 - 1

Total Trench Infiltration: = $1/2 \cdot D \cdot L \cdot f$ where: L = Length D = Depth to Invert f = Subgrade infiltration rate

Appendix D

Filter Drain Calculations

TITLE Residential Developmer	nt at Roebuck		Job Reference 210013		
SUBJECT			Calc. Sheet No.		
FILTER TRENCH DESI	GN		1		
DRAWING NUMBER 210013-DBFL-CS-SP-D	R-C-1000	Calculations by RSP	Checked by LMCL	Date 30.04.21	
INPUT DATA					
Pipe Diameter (\varnothing)			0.150 m		
Average Width (W)			0.600 m		
Average Depth to Invert	: (D)		0.600 m		
Length (L)			<mark>26.5</mark> m		
Slope (S)			150 1 in		
¹ Trench Backfill Voids R	Ratio (η)		0.30		
Trench Backfill Infiltratic	on Rate per hour		3600.0 mm/hr		
Trench Backfill Infiltration	n Rate (k)		1.000 mm/s		
Subgrade Infiltration Ra	te per hour		10.0 mm/hr		
Subgrade Infiltration Ra	te (<i>f</i>)		0.003 mm/s		
<u>VOLUME (STORAGE A</u>					
Filter Trench Storage Vo	olume per metre	г	0.123 m ³ /m		
Total Filter Trench Sto	rage Volume (V)		3.3 m ³	Provided Treatment \	/olume
INFILTRATION/ INTER	CEPTION VOLUME				
² Filter Trench Infiltration	per metre		0.002 l/s/m		
Total Filter Trench Infi	Itration Rate (I)		0.044 l/s/m		
³ Total Filter Trench Inf	iltration Volume		1.0 m ³		
<u>FLOW</u>					
Filter Trench Cross-Sec	tional Area (A)		0.24 m ²		
Total Filter Trench Flo	w (Q)		14.434 I/s		
Trench Retention Time)		0.1 hr		
Notes:			Table: 2		
¹ Trench backfill material has a	a void ratio of approximately 30%,		Material	Infiltration R	
source 'BRE Digest 365'. 2 Wetted perimeter assuming	50% of trench depth, source 'BRE Dig	est 365'	Gravel Sand	10 - 10 0.1 - 1	
3 Volume calculated using 6 ho			Loamy sand	0.01 ·	- 1
			Sandy loam Loam	0.05 - 0.001 -	
Table: 1			Silt loam	0.0005 -	
Material	void Ratio, η		Chalk	0.001 -	
Clean stone Uniform gravel	0.40 - 050 0.30 - 0.40		Sandy clay loam Silty clay loam	0.001 - 0.00005 -	
Graded sand or gravel	0.20 - 0.30		Clay	< 0.00	001
Total Trench Flow:		_	Till Rock	0.00001	
= A . k . i + Pi	pe Flow		Rock Cutoff point for most infiltration	0.0000 on drainage systems = 0.001	
where:			Source: Microdrainage		
	ctional Area of Backfill ackfill Infiltration Rate		Total Trench Infiltration	·	
i = Hydraulic			= 1/2 . D . L	_	
Hydraulic gradient has been assun	ned as the trench gradient		where:		
with an additional 250mm fall per 1 Pipe Flow calculated using Colebra			L = Length D = Depth		
- 190 From Galodiated Using ColeDit				ade infiltration rate	

Appendix E

SUDs Summary

TITLE Residential Development at Roebuck	Job Reference 210013		
SUBJECT Interception/Treatment Volume Summary	Calc. Sheet No 1		LEFL
DRAWING NUMBER 210013-DBFL-CS-SP-DR-C-1000	Calculations by Checked by RSP LMCL	Date 22.04.21	
INPUT DATA			
Interception Volume Required	1.5 m ³		
Treatment Volume Required	4.6 m ³		
<u>Catchment</u>	Interception Volumes	Treatment Volumes	
Swales Bio-Retention Permeable Paving Filter Drain Catchpit Manholes Bio Pond Stormtech Isolator Row	$\begin{array}{c c} 0.0 & m^3 \\ \hline 0.0 & m^3 \\ \hline 9.6 & m^3 \\ \hline 1.0 & m^3 \\ \hline 0.0 & m^3 \\ \hline 0.0 & m^3 \\ \hline 0.0 & m^3 \end{array}$	$\begin{array}{c c} 0.0 & m^3 \\ \hline 0.0 & m^3 \\ \hline 20.2 & m^3 \\ \hline 3.3 & m^3 \\ \hline 0.0 & m^3 \\ \hline 0.0 & m^3 \\ \hline 0.0 & m^3 \end{array}$	
Total Volumes Provided	10.6 m ³	23.5 m ³	
Check Provided Volumes are greater than Required Volumes	PASS	PASS	

Appendix F

Permissible Site Discharge Calculations

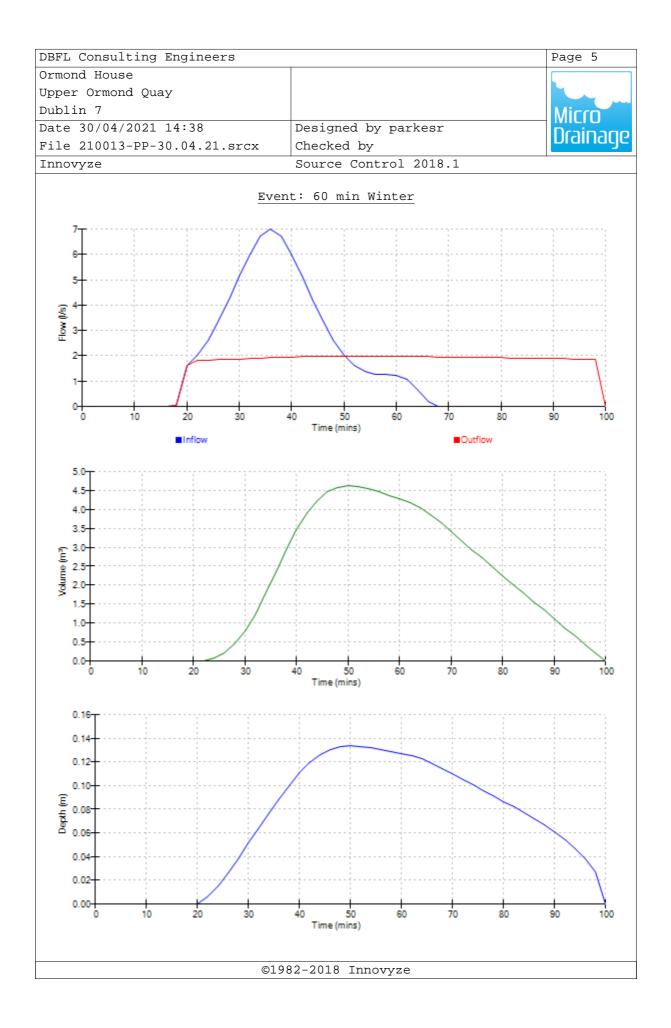
PROJECT Residential Development at Roeb	JOB REF. 210013		
SUBJECT Surface Water Calculations - Perr	ible Site Discharge	Calc. Sheet No. 1	
Drawing ref. Calculations by	Checked by	Date	
210013-info1 RSP	LMCL	22.04.21	

PERMISSIBL	E SURFACE WATER DISCHARGE CALCULATIONS								
Site Area									
What is the ove	erall site area?	0.07	Hectares (ha)	Site is Less than 50) Hectares	5			
Pre-Development Catchment Soil Characteristics									
Are there differe	ent soil types present on the pre-developed site?	No							
			-		801		CDD		
	Catchment This refers to the entire site area Area	0.07	Hectares (ha)		SOIL	SOIL Value 0.15	SPR 0.10		
	Drainage Group	1	Class		2	0.13	0.10		
	Depth to Impermeable Layers	2	Class		3	0.40	0.37		
	Permeability Group above Impermeable Layers	2	Class		4	0.45	0.47		
	Slope ^(o)	1	Class		5	0.50	0.53		
	SOIL Type	3	From FSR Table	1					
	¹ SOIL Index	0.40							
Site SOIL Index	Value	0.40]						
Site SPR Value		0.37							
Post-Developn	nent Catchment Characteristics								
Is the developm	nent divided into sub-catchments?	No							
What is the ove	rall site area for catchment?	0.07	Hectares (ha)						
	Catchment 1	Area (m ²)	Runoff Coeff.	Effective Area (m ²)					
	Roofs - Type 1 (Draining to gullies)	0	1.00	0.0					
	Roofs - Type 2 (Draining to SUDS features)	155	0.75	116.3					
	Green Roofs	0	0.50	0.0					
	Roads and Footpaths - Type 1 (Draining to gullies)	0	0.95	0.0					
	Roads and Footpaths - Type 2 (Draining to Suds features)	0	0.70	0.0					
	Paved Areas Permeable Paving	63 169	0.80	50.4 118.0					
	Bioretention Areas	0	0.95	0.0					
	Grassed Areas	19	0.37	6.8					
	Public Open Space	262	0.37	97.0					
		Nie							
	Include Public Open Space in Effective Catchment Area?	No	2	Assumed open space are	ea does not d	rain to surface wa	ter network		
	Effective Catchment Area	291.4	m ²						
	Effective Catchment Runoff Coefficient	0.72							
Long-Term Sto	brage								
Is long-term Sto		No	1						
is long-term Sic									
Permissible Si	te Discharge								
	ndard Average Annual Rainfall (SAAR)?	772.0	mm	From Met Eireann, Co-or	dinatos 3200	00 254000			
	e area less than 50 hectares?	Yes]	r foin met Lifeann, Co-or	uinates 5200	00, 234000			
_		į.	_ 						
	culated for 50 ha and linearly interpolated for area of site	0.3	Litres/sec						
⁷ Site Discharge	=	2.0	Litres/sec						
Notes and For	mulae								
	lated from Flood Studies Report - The Classification of Soils from Winter Rainfall Acceptance Rate (Table -	4.0).							
2. SPR value calculated from GDSDS - Table 6.7. 3. Rainfall depth for 100 year return period, 6 hour duration with additional 10% for climate change.									
	s (m ³) = Rainfall.Area.10.[(PIMP/100)(0.8.α)+(1-PIMP/100)(β .SPR)-SPR]. (GDSDS Section 6.7.3).								
	torage cannot be provided on-site due to ground conditions, Total Permissible Outflow is to be kept to QBA	R (Rural).							
	ow - QBAR (Rural) calculated in accordance with GDSDS - Regional Drainage Policies								
(Volume 2 - Chapte	er 6), i.e. QBAR(m3/s)=0.00108x(Area) ^{0.89} (SAAR) ^{1.17} (SOIL) ^{2.17} - For catchments greater than 50 hectares i	n area. Flow rates are li	nearly interpolated for are	eas samller than 50hectare	6.				
6. Where Total Permissible Outflow is less than 2.01/s and not achievable, use 2.01/s or closest value possible.									

7. QBAR multiplied by growth factors of 0.85 for 1 year, 2.1 for 30 year and 2.6 for 100 year return period events, from GDSDS Figure C2.

Appendix G

Surface Water Attenuation Calculations


DBFL Consul	ting Engi	neers							Page 1
Ormond Hous									
Upper Ormor	nd Quay								
Dublin 7									
Date 30/04/	(2021 14.2	0		Dogi	anad by	y parkesı	^		– Micro
						y parkesi	-		Drainag
File 210013	3-PP-30.04	.21.sr	CX		ked by				
Innovyze				Sour	ce Cont	trol 2018	3.1		
		_							
	Summary	of Resu	ilts f	or 10)0 year	Return 1	Period ((+20%)	-
		F	lali Dra	aın Ti	.me : 24	minutes.			
	Storm	Max	Max		lax	Max	Max	Max	Status
	Event		-			Control E			
		(m)	(m)	(1	/s)	(1/s)	(1/s)	(m³)	
15	min Summer	31.523	0.103		0.0	1.9	1.9	3.0	O K
30	min Summer	31.538	0.118		0.0	2.0	2.0	3.8	ОК
60	min Summer	31.541	0.121		0.0	2.0	2.0	4.0	O K
	min Summer				0.0	2.0	2.0	3.5	O K
	min Summer				0.0	1.9	1.9	2.9	O K
	min Summer				0.0	1.9	1.9	2.3	
	min Summer				0.0	1.9	1.9	1.2	ОК
	min Summer				0.0	1.9	1.9	0.5	OK
	min Summer				0.0	1.8	1.8	0.1	OK
	min Summer min Summer				0.0	1.8 1.4	1.8 1.4	0.0 0.0	ОК ОК
	min Summer				0.0	1.4	1.4	0.0	0 K
	min Summer				0.0	0.8	0.8	0.0	0 K
	min Summer				0.0	0.0	0.0	0.0	O K
	min Summer				0.0	0.5	0.5	0.0	O K
	min Summer				0.0	0.4	0.4	0.0	O K
7200	min Summer	31.420	0.000		0.0	0.3	0.3	0.0	O K
8640	min Summer	31.420	0.000		0.0	0.3	0.3	0.0	O K
10080	min Summer	31.420	0.000		0.0	0.3	0.3	0.0	O K
15	min Winter	31.533	0.113		0.0	2.0	2.0	3.6	O K
		Storm		Rain	_	Discharge			
		Event	(m	m/hr)	Volume (m³)	Volume (m³)	(mins)		
		min Sur		4.152	0.0			20	
		min Sur		4.672	0.0			29 46	
		min Sur		1.735	0.0			46 92	
		min Sur min Sur		6.258	0.0			82 14	
		min Sur min Sur		9.869 6.266	0.0			14 46	
		min Sur		2.240	0.0			40 04	
		min Su		9.992	0.0			60	
		min Su		8.532	0.0			16	
		min Sur		7.497	0.0			0	
	960	min Sur		6.112	0.0			0	
	1440	min Sur	nmer	4.582	0.0	22.6	5	0	
	2160	min Sur	nmer	3.430	0.0	25.3	5	0	
		min Sur		2.791	0.0	27.3	5	0	
		min Sur		2.084	0.0			0	
		min Sur		1.693	0.0			0	
		min Sur		1.440	0.0			0	
		min Sur		1.262	0.0			0	
		min Sur min Wir		1.129 4.152	0.0			0 20	
	10	W11	ICET A	1.132	0.0	4.5		2 V	

©1982-2018 Innovyze

DBFL Consulting Engi	neers						Page 2
Ormond House							
Upper Ormond Quay							
Dublin 7							Micro
Date 30/04/2021 14:3	8	I	Designed b	y parkesı	c		
File 210013-PP-30.04	.21.srcx		Checked by	Drainago			
Innovyze			Source Con		3.1		
		-					
Summary	of Result	ts fo	r 100 year	Return i	Period (+20%)	
	01 1100011	20				2007	=
Storm	Max M	ſax	Max	Max	Max	Max	Status
Event	Level De	pth I	nfiltration	Control Σ	Outflow V	Volume	
	(m) (m)	(l/s)	(l/s)	(l/s)	(m³)	
	21 551 0	1 0 1	0.0	2 0	2 0	4 5	0 7
30 min Winter 60 min Winter			0.0	2.0 2.0	2.0 2.0	4.5 4.6	O K O K
120 min Winter			0.0	2.0	2.0	3.7	
180 min Winter			0.0	1.9	1.9	2.7	
240 min Winter			0.0	1.9	1.9	1.7	
360 min Winter	31.455 0.	035	0.0	1.9	1.9	0.4	O K
480 min Winter			0.0	1.7	1.7	0.0	O K
600 min Winter			0.0	1.5	1.5	0.0	
720 min Winter			0.0	1.3	1.3	0.0	
960 min Winter 1440 min Winter			0.0	1.0 0.8	1.0 0.8	0.0	ок ок
2160 min Winter			0.0	0.8	0.8	0.0 0.0	0 K
2880 min Winter			0.0	0.5	0.5	0.0	
4320 min Winter			0.0	0.4	0.4	0.0	0 K
5760 min Winter	31.420 0.	000	0.0	0.3	0.3	0.0	O K
7200 min Winter	31.420 0.	000	0.0	0.2	0.2	0.0	O K
8640 min Winter			0.0	0.2	0.2	0.0	O K
10080 min Winter	31.420 0.	000	0.0	0.2	0.2	0.0	O K
	Storm Event		in Flooded /hr) Volume (m³)	l Discharge Volume (m³)	e Time-Pea (mins)		
20		C A	(7)		、		
	min Winte min Winte		.672 0.0 .735 0.0			32 50	
	min Winte		.258 0.0			38	
	min Winte		.869 0.0			22	
240	min Winte	er 16	.266 0.0	0 14.9) 1	52	
	min Winte		.240 0.0		20	06	
	min Winte		.992 0.0			0	
	min Winte		.532 0.0			0	
	min Winte min Winte		.497 0.0 .112 0.0			0 0	
	min Winte		.582 0.0			0	
	min Winte		.430 0.0			0	
	min Winte		.791 0.0			0	
4320	min Winte	er 2	.084 0.0	34.2	2	0	
	min Winte		.693 0.0			0	
	min Winte		.440 0.0			0	
	min Winte		.262 0.0			0	
10080	min Winte	ιr. Τ	.129 0.0) 41.9	7	0	
		@1927	2-2018 Thr	000720			
		©1982	2-2018 Inn	ovyze			

DBFL Consulting Engineers		Page 3
Ormond House		
Upper Ormond Quay		
Dublin 7		Micro
Date 30/04/2021 14:38	Designed by parkesr	Micro Drainage
File 210013-PP-30.04.21.srcx	Checked by	Dialitada
Innovyze	Source Control 2018.1	
Rai	nfall Details	
Rainfall Model	FSR Winter Storms	Yes
Return Period (years)	100 Cv (Summer) 0	
Region Scotlan M5-60 (mm)	d and Ireland Cv (Winter) 0 17.800 Shortest Storm (mins)	
Ratio R	0.278 Longest Storm (mins) 10	
Summer Storms	Yes Climate Change %	+20
Tim	e Area Diagram	
	l Area (ha) 0.029	
	Area Time (mins) Area	
From: To:		
0 4	0.000 4 8 0.029	
©1983	2-2018 Innovyze	

OBFL Consulting Engi	neers					Page 4
Drmond House						
Jpper Ormond Quay						
Dublin 7						Micco
Date 30/04/2021 14:3	8	Desig	ned by pa	rkesr		Micro
File 210013-PP-30.04		Check		incor		Drainac
			-	0010 1		
innovyze		Sourc	e Control	2018.1		
		Model I	Details			
	Storage is	s Online Co	ver Level	(m) 31.870		
	Por	ous Car Pa	ark Struc	ture		
Infiltration Coe	efficient Ba	ase (m/hr)	0.00000		Width (m)	10.0
	e Percolatio		1000	1	Length (m)	16.8
Ν	Max Percola	tion (l/s)	46.7	S	lope (1:X)	200.0
	Safe	ety Factor		pression St	orage (mm)	5
		Porosity		Evaporation	n (mm/day)	3
	Invert	Level (m)	31.420	Membrane	Depth (m)	0
	Hydro-Bra	ke® Optim	um Outflo	ow Control		
		Unit Refere	nce MD-SHE	-0071-2000-	0750-2000	
	D	esign Head	(m)		0.750	
	Des	ign Flow (l	/s)		2.0	
		Flush-F	lom	Ca	alculated	
		Object	ive Minim	ise upstream	n storage	
		Applicat	ion		Surface	
		Sump Availa			Yes	
		Diameter (71	
		vert Level	· · ·		30.820	
	Outlet Pipe ted Manhole				100 1200	
	Contro	l Points	Head (1	n) Flow (l/s	:)	
D	esign Point	(Calculate	ed) 0.75	io 2.	0	
		Flush-Fl				
		Kick-Fl	LO® 0.48			
Μ	ean Flow ov			- 1.		
The hydrological calc Hydro-Brake® Optimum a Hydro-Brake Optimum® 1 invalidated	as specifie	d. Should	another ty	pe of contro	ol device c	ther than a
Depth (m) Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)
0.100 1.8	1.200	2.5	3.000	3.8	7.000	5.6
0.200 2.0	1.400	2.7	3.500	4.1	7.500	5.8
0.300 2.0	1.600	2.8	4.000	4.3	8.000	6.0
0.400 1.9	1.800	3.0	4.500	4.6	8.500	6.2
0.500 1.7	2.000	3.1	5.000	4.8	9.000	6.4
0.600 1.8	2.200	3.3	5.500	5.0	9.500	6.5
0.800 2.1		3.4	6.000	5.2		
1.000 2.3	2.600	3.5	6.500	5.4		
		01982-2018		۵		
		0 9 0 7 - 7 11 - 7	3 [[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]			

Appendix H

Interception Volume Requirements

Interceptic	on Volume		
PROJECT Residential Deve	elopment at Roebuck		JOB REF. 210013
SUBJECT	alculations - Interception Volume		Calc. Sheet No. 3
Drawing ref.	Calculations by	Checked by	Date
210013-info1	RSP	LMCL	22.04.21

Site Area		
Total Site Area =	0.07	Hectares (ha)
Interception Volume (Post-D	evelopr	<u>nent)</u>
Interception Volume (Post-D Impermeable Area =	0.04	nent) Hectares (ha)

Appendix I

Treatment Volume Requirements

Treatment	Volume			
PROJECT Residential Deve	lopment at Roebuck		JOB REF. 210013	
SUBJECT Surface Water Calculations - Treatment Volume			Calc. Sheet No. 2	ŒL
Drawing ref.	Calculations by	Checked by	Date	
210013-info1	RSP	LMCL	22.04.21	
				-

SURFACE WATER CAL	<u>oolni</u>		
Site Area			
Total Site Area =	0.07	Hectares (ha)	
Pond Treatment Volume (Post	t-Develo	pment)	
Pond Treatment Volume (Post	t-Develo 0.039	pment) Hectares (ha)	

Appendix J

Water Demand Calculations

TITLE Proposed Residential Development at Roebuck	Job Reference 210013					
SUBJECT Water Demand for Irish Water - Residential	Calc. Sheet No. 1					
DRAWING NUMBER Calculations by 210013-DBFL-CS-SP-D RSP	Checked by Date LMCL 22.0	04.21				
DEMAND						
Housing Units	4 no.					
Daily Demand per person ¹	150 litres/person/c	day				
Average Occupancy Ratio ²	2.7 person/unit					
Total Site Occupancy	11 people					
Average Daily Demand	1,620 l/day					
Average Day in Peak Week ³	2,025 l/day					
Normal Length of Day ⁴	24 hours					
Peak Factor ⁵	5.0					
Post Development Peak Water Demand ⁶	0.117 l/s					
Post Development Average Water Demand	0.019 l/s					
Normal Demand ⁷	0.019 l/s					
Notes: 1. Daily demand per person is 150 litres/person/day from the Irish Water Code of Practice for Wastewater Infrastructure.						

- 2. Occupancy ratio of 2.7 persons per dwelling from Irish Water Pre-Connection Enquiry Form (PCEF Rev 2).
- 3. Average Day in Peak Week is 1.25 times the average daily demand.
- 4. Assumed normal demand is the total daily demand during the normal length of day.
- 5. Peak Factor for pipe sizing from Irish Water Code of Practice for Wastewater Infrastructure .
- 6. Peak Factor multiplied by Average Day in Peak Week flow.
- 7. Normal demand is the total daily demand during the normal length of day.
- 8. Fire flow is required at 25I/s as per B.S. 5306-1:1976.