

PROPOSED PART 8 RESIDENTIAL DEVELOPMENT LAMBS CROSS, DUBLIN 18.

ENGINEERING REPORT

DUN LAOGHAIRE – RATHDOWN COUNTY COUNCIL October 2024

Project No: 23006

Contents Amendment Record

2B Richview Office Park, Clonskeagh, Dublin 14 Tel: +353-1-260 2655 Fax: +353-1-260 2660 E-mail: info@MORce.ie MALONE O'REGA

Title: Proposed Part 8 Residential Development Lambs Cross, Dublin 18 **Engineering Report**

- Job Number: 23006
- **Prepared By: Michelle Gaughan**

gaughan Signed:

Checked By: **Douglas Weir**

Signed:

Approved By: **Douglas Weir**

Signed:

Revision Record

lssue No.	Date	Description	Remark	Prepared	Checked	Approved
0	29/09/2023	Information	P1	PB	ND	ND
1	18/10/2023	Information	P1	PB	ND	ND
2	23/10/2023	Information	P1	PB	ND	ND
0	10/07/2024	Planning	P3	KA	FM	FM
1	21/10/2024	Planning	P3	MG	DW	DW

CONTENTS

Page No.

1	ΙΝΤΙ	RODUCTION	1
	1.1	Introduction	1
	1.2	Proposed Development	1
	1.3	Site Description	2
2	SUF	RFACE WATER DRAINAGE DESIGN	4
	2.1	Introduction	4
	2.2	Existing Services	4
	2.3	Proposed Services	5
	2.4	Permissible Runoff	5
	2.5 2.5.1 2.5.2 2.5.3 2.5.4	Sustainable Drainage Systems (SuDS) Compliance with the principles of the CIRIA C753 SuDS Manual Intensive Green/ Blue Roofs Permeable Paving Rain Garden / Bioretention Area	8 8 10 11 12
	2.6	Interception Storage	13
	2.7	Attenuation Design	13
	2.8 2.8.1 2.8.2 2.8.3 2.8.4	GDSDS Criterion Compliance Criterion 1 River Water Quality Protection Criterion 2 River Regine Protection Criterion 3 Site Flooding Criterion 4 River Flood Protection	14 14 14 15 15
	2.9	Enhanced Biodiversity	15
	2.10 2.10. 2.10. 2.10. 2.10. 2.10. 2.10.	SuDS CIRIA Pillars of Design 1 Water Quantity	16 16 16 16 16
	2.11	Maintenance and Management Plan	17
	2.12	Potential Future Expansion	17
3	FOL	JL WATER DRAINAGE DESIGN	18
	3.1	General	18
	3.2	Existing Services	18
	3.3	Proposed Services	18
	3.4 3.4.1 3.4.2	Foul Water Demand Calculations Residential Foul Water Demand Community Centre Foul Water Demand	19 19 19

3.5	Potential Future Expansion	19
4 WA	TER SUPPLY	20
4.1	General	20
4.2	Existing & Proposed Services	20
4.3 4.3.1	Water Demand Calculations 1 Residential Water Demand	21 21
4.3.2	2 Community Centre Water Demand	21
APPEN	DIX A – IRISH WATER CONFIRMATION OF FEASIBILITY	23
APPEN	DIX B – ATTENUATION VOLUME CALCULATIONS	24
APPEN	DIX C – SURFACE WATER PIPE NETWORK CALCULATIONS	25
APPEN	DIX D – FOUL WATER PIPE NETWORK CALCULATIONS	26
APPEN	DIX E – MAINTENANCE AND MANAGEMENT PLAN	27

1 INTRODUCTION

1.1 Introduction

This report is prepared on behalf of the National Development Finance Agency (NDFA) in consultation with Dún Laoghaire-Rathdown County Council to accompany a Part 8 Proposal for the construction of a residential development on a site located in the townland of Balally, at Lamb's Cross, Dublin 18 situated at the junction of Sandyford Road and Hillcrest Road.

The purpose of this document is to describe the engineering proposals associated with the new development. These proposals are indicated on the drawings prepared by Malone O'Regan which accompany the planning submission. Where reference is made to drawings and drawing numbers within this report these should be taken as meaning those drawings produced by Malone O'Regan unless specifically stated otherwise.

1.2 Proposed Development

The proposed development of 37no. apartment dwelling units at a site c. 0.35 ha on a site located at Lambs Cross, Dublin 18 situated at the junction of Sandyford Road and Hillcrest Road, which will consist of the following:

- i. 37 no. apartment units in a 3 5 storey building over undercroft area, including 29 no. one bed units; and 8 no. two bed units;
- ii. 1 no. community facility at ground floor of 171sqm;
- iii. Energy Centre at first floor level and external plant area set back at third floor level;
- iv. Undercroft area at lower ground level comprising (a) 2 no. ESB substations (b) car, bicycle and motorcycle parking; (c) bin storage; (d) bulk storage area; and (e) supporting mechanical, electrical and water infrastructure.
- v. Landscaping works including provision of (a) communal open space; and (b) public realm area fronting onto Sandyford Road and Hillcrest Road
- vi. All associated site development works including (a) vehicular access off Hillcrest Road;(b) public lighting; (c) varied site boundary treatment comprising walls and fencing; and(e) temporary construction signage.

The site plan and lower-level layout is illustrated in Figure 1-1.

The purpose of this document is to describe the engineering proposals associated with the new development. These proposals are indicated on the drawings prepared by Malone O'Regan which accompany the planning submission. Where reference is made to drawings and drawing numbers within this report, these should be taken as meaning those drawings produced by Malone O'Regan unless specifically stated otherwise.

1.3 Site Description

The location of the proposed development is illustrated in Figure 1-2. The site is situated in the residential area of Sandyford, approximately 9.4km from Dublin city centre. The lands to the north of the site border an existing housing development Lambs Brook. There are existing detached two storey houses opposite the development on the southern side of the site on the opposite side of Hillcrest Road. To the west of the site the new development faces onto the R117 Sandyford Road.

The east side of the development is facing onto Brewery Stream which enters a culvert at the northeast corner of the site. The proximity of the site to natural watercourses is outlined in Figure 1-3.

Figure 1-2- Site Location

Figure 1-3 - Surrounding Watercourse (Extract from the EPA Maps)

2 SURFACE WATER DRAINAGE DESIGN

2.1 Introduction

This chapter follows the guidelines set out in Greater Dublin Strategic Drainage Study (GDSDS) and the CIRIA 2015 SuDS Manual.

The aim of any SuDS strategy is to ensure that a new development does not negatively affect surrounding watercourse systems, existing surface water networks and groundwater systems. This SuDS strategy will achieve these aims by using a variety of SuDS measures within the site. These measures include water interception, treatment, infiltration and attenuation. The SuDS strategy will be developed with the following steps:

- 1. The existing greenfield run-off of the development site will be calculated and used as the minimum benchmark for the SuDS design. This run-off calculation is based on the drained area of the new development. The post development run-off will not exceed the greenfield run-off.
- 2. A set of SuDS measures will be chosen based on their applicability and usage for the site.
- 3. A "FLOW" model will be created to analyse the rainfall on the site and the effectiveness of the proposed SuDS measures.
- 4. If effective, these SuDS measures will be incorporated into the proposed design.

Table 2-1 outlines the parameters adopted in the design of the surface water drainage infrastructure.

Parameter Description	Assigned Value
Surface Water Drainage Pipework	2 years
Design Return Period	(Ref IS EN 752 Table 2 for 'City centres / industrial /
	commercial areas')
Attenuation Pond Design Return Period	100 years
Allowance for climate change	20%
	(Ref. OPW Flood Risk Management Climate Change
	Sectoral Adaptation Plan, High-End Future Scenario)
M5-60	18.3mm (Met Eireann data)
M5-2D	67.9mm (Met Eireann data)
Ratio, r	0.27
Time of Entry	4 min
Pipe roughness, Ks	0.6mm (Ref. GDSDS Volume 2, Table 6.4)
Minimum velocity	1.0 m/s (Ref. GDSDS Volume 2, Table 6.4)

Table 2-1 - Sur	face Water	Design	Parameters

2.2 Existing Services

An existing network of drainage runs around the perimeter of the site on two sides. There is an existing 225mm diameter surface drainage running parallel Sandyford Road to the western boundary. There is a 500mm diameter concrete sewer running parallel Blackglen Road to the south-west of the site boundary. These underground sewers carry surface water runoff towards existing catchment areas in the Dublin area. There is an existing 900mm diameter culvert at the northeastern boundary of the site. Due to the relative levels of the existing drainage within the road and the proposed site levels, it is not possible to achieve a gravity connection to the surface water drainage pipework installed at Sandyford Road and Blackglen Road. It is proposed to achieve a gravity connection toward the culvert at the northeast boundary of the site.

2.3 Proposed Services

The proposed surface water drainage system is designed to comply with the 'Greater Dublin Strategic Drainage Study (GDSDS) Regional Drainage Policies Technical Document – Volume 2, New Developments, 2005' and the 'Greater Dublin Regional Code of Practice for Drainage Works, V6.0 2005'. CIRIA Design Manuals C753, C697 and C609 have also been used to design the surface water drainage system within the site.

The proposed surface water drainage layout for the development is indicated on Malone O'Regan drawings SHB5-LDR-DR-MOR-CS-P3 130, 150 and 151. Surface water runoff from new internal road surfaces, footpaths, other areas of hardstanding and the roofs of buildings will be collected within a gravity drainage network and directed towards an attenuation storage system. The attenuation storage is sized to cater for a 1 in 100-year storm event.

The outfall from the detention basin will be restricted to the applicable 'greenfield' runoff rate using a Hydrobrake flow control device. A number of sustainable drainage systems (SuDS) are proposed in order to minimise the volume and rate of runoff from the site. Further details on these SuDS measures are provided in Section 2.5. All surface water drainage will be designed and installed in accordance with the Greater Dublin Regional Code of Practice for Drainage Works. The runoff coefficients used in the calculations are as outlined in the Table 2-2.

Type of Areas	CV
Landscaping (Grass / Soft)	0.20
Intensive/Extensive Green Roof	0.60
Blue Roof	0.60
Permeable Paving	0.50
Impermeable Surface (Incl. tree pits)	0.90
Standard Roof (Impermeable)	0.95

Table 2-2 – Runoff Coefficients

Calculations for the Surface Water Pipe Network are provided in Appendix C.

2.4 Permissible Runoff

The regression equation recommended for use by the Greater Dublin Strategic Drainage Study 2005 calculates a value, $QBAR_{rural}$, which is sourced from the Institute of Hydrology Report 124. This value is the mean annual flood flow from a rural catchment in m³/s and is given by the equation,

QBAR_{rural} = 0.00108[Area^0.89] x [SAAR^1.17] x [Soil^2.17]

Where:

QBAR _{rural}	Mean annual flood flow from a rural catchment in m ³ /s
Area	Area of the catchment in km ²

SAARStandard Average Annual Rainfall in mm.SoilSoil index

For catchments smaller than 50 hectares, $QBAR_{rural}$ is first calculated assuming an area of 50ha and then $QBAR_{rural}$ for the site area is calculated on a pro rata basis.

Standard Average Annual Rainfall for the site in Lambs Cross was taken from the Flood Studies Report as 1014mm.

An appropriate Soil Index value was determined following a review of published data and sitespecific ground investigation works.

The 1975 Flood Studies Report included a Soil Index map, a digitised version of which available at www.uksuds.com. This map indicated that the site lies within an area of Soil Type 2 (SPR Index 0.3). Soil Type 2 corresponds with a very permeable soil such as sand and gravel with low runoff potential.

Site Investigation works were completed by Causeway Geotech in February 2024. Ground types encountered during the investigation of the site consisted of:

- Made Ground: reworked sandy gravelly clay fill or sandy clayey gravel fill with varying fragments of concrete, plastic and red brick extending to a depth of 0.40-1.10m.
- Glacial Till: brown sandy gravelly clay encountered across the site, generally firm to stiff.

Groundwater was not encountered during drilling at any of the borehole locations. 2 no. infiltrations tests were conducted on site. One of the tests indicated an infiltration rate of $f = 1.66667 \times 10^{-5}$ m/s, however at the other test location, the water level dropped too slowly to allow calculation of the soil infiltration rate. The report prepared Causeway Geotech concludes that the rate of infiltration coupled with the soil descriptions imply that the subsoil may be considered suitable media for an infiltration drainage system.

Given the permeable nature of the subsoil it is considered appropriate to adopt a Soil Index value of Type 2.

When this equation is applied to the proposed development, the following value for $\mathsf{QBAR}_{\mathsf{rural}}$ is obtained.

For 50ha area QBAR_{rural} = $0.00108 [0.5]^{0.89} \times [1014]^{1.17} \times [0.30]^{2.17}$ = $0.141 \text{ m}^3/\text{s}$ = 141.0 l/s (for 50ha) QBAR_{rural} = 2.812 l/s/ha > 2 l/s/ha

QBAR_{rural} for the subject site (overall catchment area) = $2.812 \text{ l/s/ha} \times 0.35 \text{ ha}$

QBAR = 0.995 l/s

According to the GDSDS Chapter 6.3.14 if the separate long-term storage cannot be provided and temporary flood storage forms part of the single attenuation system, all the runoff from the site should be discharged at a rate of 2 l/s/ha or the average annual peak flow rate QBAR, whichever is greater. In this case QBAR is the higher value and has been adopted as the limiting discharge rate.

While it is possible to design and manufacture a Hydrobrake which will restrict flow rates to very low values, when the flow rate is less than 2 litres / second the Hydrobrake units are highly susceptible to blockage and are not necessarily suitable in a drainage network. The SuDS manual (CIRIA Document C753) specifies a minimum orifice diameter of 75mm which cannot be achieved while simultaneously limiting the flow to 0.995 l/s. Therefore, it is proposed to provide a Hydrobrake which will limit the outflow from the attenuation tank to 2 litres / second.

For the purpose of the surface water attenuation design, the site is dealt with as one catchment as shown in Figure 2-1. The breakdown of the impermeable areas contributing to the surface water drainage network in the catchment with the applied runoff co-efficient is provided in Table 2-3 and Table 2-4.

Figure 2-1 - Surface Water Drainage Catchment Area

For the purposes of surface water attenuation design, the site is dealt with as one catchment as shown in Figure 2-1 and is draining to an existing catchment/treatment system via existing public sewers. A breakdown of the impermeable areas contributing to the surface water drainage network in each catchment with applied runoff coefficients is provided in Table 2-3 and Table 2-4.

	Type of Surface		Area 67 m	Run-off	Equivalent	Urban Creep	Climate	Overall
Total Area sq.m			Area sq.m	Coefficient	Impermeable	Allowance (10%)	Change (20%)	Impermeable
	Roof	Standard roof (25%)	283.21	0.95	269.05	295.96	355.15	
	KUUI	Green Roof (75%)	0.00	0.60	0.00	0.00	0.00	
3,538.00	Permeable Paving inc. areas from hardstanding		702.48	0.50	351.24	386.36	463.63	1414.32
ha	Landssanad Areas ins. areas from							ha
	hardstanding Hardstanding		1544.64	0.20	308.93	339.82	407.78	0.14
0.35								
			158.04	0.90	142.23	156.46	187.75	

 Table 2-3 - Breakdown of Impermeable Areas for Proposed Development

	Table 2-4 - E	Breakdown of I	mpermeable /	Areas for	Proposed	Development –	Blue	Green	Root
--	---------------	----------------	--------------	-----------	----------	---------------	------	-------	------

Type of Surface		A	Run-off	Equivalent	Urban Creep	Climate	Overall	
		Area sy.iii	Coefficient	Impermeable	Allowance (10%)	Change (20%)	Impermeable	
Poof	Standard roof (25%)	0.00	0.95	0.00	0.00	0.00		
1001	Green Roof (75%)	849.64	0.60	509.78	560.76	672.91		
Permeable Paving inc. areas from hardstanding		0.00	0.50	0.00	0.00	0.00	672.91	
Landscaped Areas inc. areas from hardstanding Hardstanding		0.00	0.20	0.00	0.00	0.00	ha	
							0.07	
		0.00	0.90	0.00	0.00	0.00		
	Ty oof ermeable Pav ardstanding andscaped Ar ardstanding ardstanding	Type of Surface oof Standard roof (25%) Green Roof (75%) Green Roof (75%) ermeable Paving inc. areas from ardstanding andscaped Areas inc. areas from ardstanding	Type of Surface Area sq.m oof Standard roof (25%) 0.00 Green Roof (75%) 849.64 ermeable Paving inc. areas from ardstanding 0.00 andscaped Areas inc. areas from ardstanding 0.00 ardstanding 0.00	Type of Surface Area sq.m Coefficient 0of Standard roof (25%) 0.00 0.95 Green Roof (75%) 849.64 0.60 ermeable Paving inc. areas from ardstanding 0.00 0.50 andscaped Areas inc. areas from ardstanding 0.00 0.20 ardstanding 0.00 0.90 0.90	Type of Surface Area sq.m Coefficient Impermeable 0of Standard roof (25%) 0.00 0.95 0.00 Green Roof (75%) 849.64 0.60 509.78 ermeable Paving inc. areas from ardstanding 0.00 0.50 0.00 andscaped Areas inc. areas from ardstanding 0.00 0.20 0.00	Type of Surface Area sq.m Coefficient Impermeable Allowance (10%) 0of Standard roof (25%) 0.00 0.95 0.00 0.00 Green Roof (75%) 849.64 0.60 509.78 560.76 ermeable Paving inc. areas from ardstanding 0.00 0.50 0.00 0.00 andscaped Areas inc. areas from ardstanding 0.00 0.20 0.00 0.00 ardstanding 0.00 0.90 0.20 0.00 0.00	Type of Surface Area sq.m Coefficient Impermeable Allowance (10%) Change (20%) 0of Standard roof (25%) 0.00 0.95 0.00 0.00 0.00 ormeable Paving inc. areas from ardstanding 0.00 0.50 0.00 0.00 0.00 0.00 andscaped Areas inc. areas from ardstanding 0.00 0.20 0.00 0.00 0.00 0.00 ardstanding 0.00 0.95 0.00 0.00 0.00 0.00 0.00	

2.5 Sustainable Drainage Systems (SuDS)

The proposed development will be designed in accordance with the principles of Sustainable Drainage Systems (SuDS) as embodied in the recommendations of the Greater Dublin Strategic Drainage Study (GDSDS) and will significantly reduce run-off rates and improve storm water quality discharging to the public storm water system. The GDSDS addresses the issue of sustainability by requiring designs to comply with a set of drainage criteria which aim to minimize the impact of urbanization by replicating the run-off characteristics of the greenfield site. The criteria provide a consistent approach to addressing the increase in both rate and volume of run-off, as well as ensuring the environment is protected from any pollution from roads and buildings. These drainage design criteria are as follows:

- Criterion 1 River Water Quality Protection
- Criterion 2 River Regime Protection
- Criterion 3 Flood Risk Assessment
- Criterion 4 River Flood Protection

The requirements of SuDS are typically addressed by provision of the following:

- Interception storage
- Treatment storage (commonly addressed in interception storage)
- Attenuation storage
- Long term storage (not applicable if growth factors are not applied to Qbar when designing attenuation storage)

2.5.1 Compliance with the principles of the CIRIA C753 SuDS Manual

The C753 SuDS Manual explains that the primary function of SuDS measures is to protect watercourses from any impact due to the new development. However, SuDS can also improve the quality of life in a new development and urban spaces by making them more vibrant,

visually attractive, sustainable and more resilient to change. This document explains the wider social context of SuDS and how SuDS can deliver high quality drainage while supporting urban areas to cope better with sever rainfall both in present and future.

There are four main categories of benefits that can be achieved by SuDS:

- 1. Water Quantity (mitigate flood risk & protect natural water cycle)
- 2. Water Quality (manage the quality of the runoff to prevent pollution)
- 3. Amenity (create and sustain better places for people)
- 4. Biodiversity (create and sustain better places for nature)

Table 2-5 includes a list of all current SuDS measures which would typically be considered when designing a new residential development such as that which is now proposed. This table also outlines the rationale behind the selection of SuDS measures and why other measures would not be appropriate. The runoff generated from the catchment will be attenuated in storage structures within and below ground and in the blue roof attenuation systems. The proposed attenuation systems are explained in section 2.5. A wide range of SuDS measures are proposed across the site to maximise interception and treatment.

Table 2-5 - Pr	oposed Sub	S realures
SUDS Measure	Measure Adopted?	Rationale for Selecting / Not Selecting Measure
Bioretention Swales Shallow landscaped depressions that serve to reduce runoff rates / volumes as well as providing interception storage, treatment of runoff and encouraging biodiversity	No	Bioretention swales are not proposed in areas beside roads and green spaces within the site due to lack of space.
Tree pits Attenuate surface water runoff by utilising voids within the root zone	No	Tree pits have not been specified in this development due to the confined space and maintaining existing trees on the site.
Green Roofs Vegetated roofs used to reduce the rate and volume of runoff as well as encouraging biodiversity	Yes	It is proposed to provide green roofs for flat roofs above apartment and duplex buildings.
Blue Roofs Provide attenuation storage, reducing requirement for storage elsewhere on site	Yes	It is proposed to provide blue roofs in areas where the building structure is appropriate to support such roofs. Refer to 'Green Roofs' above.
Green Living Walls Planted walls which improve air quality and encourage biodiversity	No	Green walls are not considered appropriate given the proposed residential building use.
Rain Gardens Localised depressions in the ground that collect runoff from roofs/roads and allow infiltration and absorption	Yes	The proposed residential development does aim to provide rain gardens.
Rainwater harvesting Runoff captured from roofs is reused for non-potable purposes, thereby reducing overall runoff volume.	No	In the case of the proposed residential development, it is not considered viable to gather the water for grey water usage in the maintenance aspect of the building.
Permeable paving Allows runoff to percolate into the subsoil, reducing overall runoff volume	Yes	Permeable paving is proposed within the development in footpaths, private curtilage areas and car parking spaces.
Porous asphalt Allows runoff to percolate into the subsoil, reducing overall runoff volume	No	Porous asphalt is not considered suitable for use in roads within the development

Table 2-5 - Proposed SuDS Features

		as it does not comply with the Local Authority roads standards.
Integrated Constructed Wetlands (ICWs) System of shallow ponds, planted to treat water, removing nutrients and harmful impurities	No	ICWs are not considered appropriate due to the limited space available.

Further details of the principal SuDS features proposed for this development are provided in the following sections

2.5.2 Intensive Green/ Blue Roofs

As part of the proposed development, it is intended to provide intensive green/ blue roofs to the appropriate areas of the building. Green roofs provide ecological, aesthetic and amenity benefits and intercept and retain rainfall, at source, reducing the volume of runoff and attenuating peak flows. Details from the suppliers of green systems indicate that they will typically provide interception storage of 38 litres per square metre of roof covering.

Green roofs absorb most of the rainfall that they receive during normal rainfall events and treat surface water through removal of atmospherically deposited urban pollutants. They also reduce building heating requirements (by evaporating cooling). Intensive green roofs typically have a growing medium of 200mm allowing for a wider array of planting possibilities than extensive (sedum) green roof coverings.

The green roofs will be underlaid by a storage medium so that they also perform as blue roofs, capable of attenuating rainwater. The proposed green/ blue roofs will provide initial storage of rainwater, while also reducing the rate at which rainwater from heavier rainfall events discharges to the attenuation systems.

Flow restrictor outlets will be provided to control the rate of runoff from the roof. The overflow from the green/blue roof is limited by a Hydrobrake flow control device which will control the rate of runoff from the roof to 0.439l/s.

	= 0.309 l/s			
$QBAR_{rural}$ for the roof area	= 2.812 l/s/ha x 0.11	ha		
	= 2.812 l/s/ha > 2	/s/ha		
	= 141.0 l/s	(for 50ha)		
	= 0.141 m ³ /s			
For 50ha area QBAR _{rural}	= 0.00108 [0.5] ^{0.89} x [1014] ^{1.17} x [0.30] ^{2.17}			

Since the green/blue roofs provide their own attenuation with flow restrictor outlet on the roof, these areas will not drain towards the main attenuation tank on site. Runoff from the green/ blue roofs will connect to the surface water drainage pipework downstream from the main attenuation tank and associated Hydrobrake.

It is proposed to provide intensive green/ blue roofs over at least 75% of the total roof area, which exceeds the minimum coverage requirement of 50% as outlined in the Dublin City Council Green & Blue Roof Guidelines 2021. Refer to Figure 2-3 for the location of the Intensive Green/Blue roof on the proposed site plan.

Roof structures will be designed to cater for the additional loads associated with the blue roof storage layer and the overlying green roof build-up. Details of the proposed green/ blue roof build-up are provided on Malone O'Regan drawing no. SHB5-LDR-DR-MOR-CS-P3-151, an extract from which is provided in Figure 2-3.

Figure 2-2 - Typical Intensive Green/ Blue Roof Section

Figure 2-3 – Proposed Green/ Blue on Plan (Extract from Architects Drawing – Proposed Roof Level Plan)

2.5.3 Permeable Paving

It is proposed to use permeable paving to surface the private curtilage areas, parking spaces and footpaths in the development. It is anticipated that most of the rainwater will be able to percolate through the permeable paving and infiltrate into the underlying soils. However, it is proposed to provide a number of overflow outlets within the permeable paving build-up which will ensure the permeable area is not flooded during severe rainfall events. The outlet from the permeable paving areas will be raised 100-150mm above formation level to provide interception storage within the stone sub-base; this gives 30mm interception storage @ 30% voids in the gravel. These permeable surfaces, together with their associated substructures, are an efficient means of managing surface water runoff close to source – intercepting runoff, reducing the volume and frequency of runoff, and providing treatment medium. Refer to the Malone O'Regan SuDS detail drawing no. SHB5-LDR-DR-MOR-CS-P3-151 for typical permeable paving details.

Permeable paving will be provided with a perforated underdrain pipe. The pipe shall be raised above the base of the stone sub-base so that minor accumulations of runoff water can percolate through the stone sub-base. During significant rainfall events, excess water will disperse through the perforated underdrain preventing flooding at surface level. The underdrain will connect to inspection manholes which will facilitate maintenance of the drainage pipework.

Figure 2-4 - Typical Section through Permeable Paving

2.5.4 Rain Garden / Bioretention Area

It is proposed to provide a number of bioretention rain gardens in the green open spaces of the development. A bioretention rain garden employs an engineered topsoil and is used to manage polluted urban rainfall runoff from hard surfaces areas. Refer to the Malone O'Regan SuDS detail drawing no. SHB5-LDR-DR-MOR-CS-P3-151 for typical rain garden detail.

The report prepared by Causeway Geotech imply that the subsoil may be considered suitable media for infiltration. It is anticipated that runoff from minor rainfall events will be able to percolate directly into the soil.

Key design aspects for bioretention raingardens include:

- 1. Silt collection in forebays to allow for easy removal of silt.
- 2. Space above the soil profile for water collection and stilling before infiltration through the engineered soil.
- 3. A surface mulch of organic matter, grit or gravel protects the infiltration capacity of the soil.
- 4. A free draining soil, typically 450 600mm deep, with 20 30% organic matter cleans, stores and conveys runoff to a drainage layer.
- 5. A transition layer of grit and/ or sand protects the under-drained drainage layer.
- 6. A surface overflow for heavy rain or in the event of blockage.
- 7. Perforated underdrain pipe.

Figure 2-5 - Typical Section through Bioretention Rain Garden (Extract from South Dublin County Council – Sustainable Drainage Explanatory Design & Evaluation Guide 2022)

2.6 Interception Storage

To prevent pollutants or sediments discharging into watercourses the GDSDS requires "interception storage" to be incorporated into the drainage design for the development. The volume of interception required is based on 5-10mm of rainfall depth from 80% of the runoff from impermeable areas as defined in GDSDS. The interception volume attributable to each SuDS feature consists of the volume of water that can infiltrate to the ground, the quantity that evaporates into the atmosphere and the volume lost through transpiration in plants and vegetation. Additionally, there will be some loses of water due to absorption and wetting of stone and soil media.

The required interception storage and provided interception storage is provided in Appendix B of the report.

2.7 Attenuation Design

Attenuation storage is provided on site using an attenuation tank located along the eastern boundary, under the site entrance road. For the purpose of the surface water attenuation design, the site is dealt with as one catchment as shown above. The volume of surface water storage required has been calculated in accordance with the SuDS Manual Ciria C697, taking account of design invert levels, ground levels and allowable discharge rate. Calculations to size the attenuation tank for the 1 in 100-year flood event is provided in Appendix B.

Surface water runoff from the site will drain by gravity towards the attenuation tank. The calculated storage capacity is **73.000m**³.

The volume of runoff water that will be generated during a 1 in 100-year storm event has been calculated to be **69.120m³**. This volume has been calculated accommodating a 20% increase in future rainfall intensities as a result of climate change allowing for 10% urban creep. The attenuation storage has been assessed using the average annual peak flow rate QBAR. The overflow from the attenuation tank is limited by a Hydrobrake flow control device which restricts the flow to 0.995 litres/s.

2.8 GDSDS Criterion Compliance

2.8.1 Criterion 1 River Water Quality Protection

Run-off from natural greenfield areas contributes very little pollution and sediment to rivers and for most rainfall events direct run-off from greenfield sites to rivers does not take place as rainfall percolates into the ground. By contrast, urban run-off, when drained by pipe systems, results in run-off from virtually every rainfall event with high levels of pollution, particularly in the first phase of run-off, with little rainfall percolating to the ground. To prevent this happening, Criterion 1 requires that interception storage and/or treatment storage is provided, thereby replicating the run-off characteristics of the pre-development greenfield site.

2.8.2 Criterion 2 River Regine Protection

Attenuation storage is provided to limit the discharge rate from the site into the public network. As per the GDSGS, the required attenuation volume has been calculated for the 1-year, 30-year and 100-year return periods, identifying the critical storm for each – refer to the calculations included in Appendix B.

The 1975 Flood Studies Report included a Soil Index map, a digitised version of which available at www.uksuds.com. This map indicated that the site lies within an area of Soil Type 2 (SPR Index 0.3). Soil Type 2 corresponds with a very permeable soil such as sand and gravel with low runoff potential.

Site Investigation works were completed by Causeway Geotech in February 2024. Ground types encountered during the investigation of the site consisted of brown sandy gravelly clay, generally firm to stiff.

Groundwater was not encountered during drilling at any of the borehole locations. 2 no. infiltrations tests were conducted on site. One of the tests indicated an infiltration rate of $f = 1.66667 \times 10^{-5}$ m/s, however at the other test location, the water level dropped too slowly to allow calculation of the soil infiltration rate. The report prepared Causeway Geotech concludes that the rate of infiltration coupled with the soil descriptions imply that the subsoil may be considered suitable media for an infiltration drainage system.

Given the permeable nature of the subsoil it is considered appropriate to adopt a Soil Index value of Type 2 (SPR Index 0.3). The calculations use a Standard Average Annual Rainfall (SAAR) value of 1014mm, taken from HR Wallingfords SuDS map.

Based on these calculations, the required attenuation storage for the site is 69.120m³. This volume is sufficient for the 1 in 100-year storm event, allowing for a 20% increase in future rainfall intensities as a results of climate change and 10% urban creep.

The proposed attenuation tank is located along the eastern boundary, under the site entrance road. Surface water runoff will be restricted via a Hydrobrake flow control device with discharge from the site limited to the average annual peak flow rate QBAR. The overflow from the attenuation tank is limited by a Hydrobrake flow control device which restricts the flow to 0.995 litres/s.

2.8.3 Criterion 3 Site Flooding

The GDSDS requires that no flooding should occur on site for storms up to and including the 1 in 30-year event. The pipe network and the attenuation storage volumes should, therefore, be checked for such storms to ensure that no site flooding occurs although partial surcharging of the system is allowed if it does not threaten to flood.

For the 1 in 100-year event, the pipe network can fully surcharge and cause the site flooding, but the top water level due to any such flooding must be at least 500mm below any vulnerable internal floor levels, and the flood waters should be contained within the site. In addition, the top water level in any attenuation device during the 100-year storm must be at least 500mm below any vulnerable internal floor levels.

Surface water drains have been sized to ensure the following:

- The system does not surcharge for the 2-year event.
- The system surcharges but does not flood for the 30-year event,
- The system surcharges but does not flood for the 100-year event.
- Detailed modelling of the surface water sewer network has been carried out using the Causeway Flow software to confirm the above criteria is adequately met. The outputs of the Causeway flow report are included in Appendix C for Surface Water calculations and Appendix D for Foul Water calculations.

2.8.4 Criterion 4 River Flood Protection

The long-term storage volume is a comparison of pre- and post- development runoff volumes. The objective is to limit the runoff discharged after development to the same as that which occurred prior to the development.

Of the three methods described in the GDSDS for establishing River Flood Protection by comparison of the pre- and post- development runoff volumes, (Criteria 4.1, 4.2 and 4.3 respectively), Criteria 4.3 is selected for use as the most practical criteria at this stage in the design.

The Criteria 4.3 approach is for all runoff to be limited to either QBAR or to 2l/s/ha, whichever is greater. As noted in Section 2.4, in this instance, the QBAR is greater than 2l/s/ha and has been adopted as the limiting discharge rate.

The proposed drainage system includes a flow control device to ensure that the discharge rate is limited to the greenfield equivalent and ample attenuation is provided for the 1 in 100-year flood event, accounting for 20% increase due to climate change.

2.9 Enhanced Biodiversity

Bioretention areas will be included as part of the proposed development. Biodiversity has been carefully considered when determining both the location and the detailed design of these elements. The proposed bioretention area offers the opportunity to create a planted vegetation zone for plants and animals which will encourage biodiversity on the site.

2.10 SuDS CIRIA Pillars of Design

2.10.1 Water Quantity

The "Water Quantity" design objective is to ensure that the surface water runoff from a developed site does not have a detrimental impact on people, property, or the environment, it is important to control:

- How fast the runoff is discharged from the site (i.e., the peak runoff rate) and
- How much runoff is discharged from the site (i.e., the runoff volume)

2.10.2 Water Quality

The "Water Quality" design objective seeks to ensure the surface water runoff from the site does not compromise the groundwater or surrounding water courses relating to the site.

2.10.3 Amenity

The "Amenity" design objective aims to deliver attractive, pleasant, useful and above all liveable urban environments. SuDS measures should be designed to replicate the existing natural environment and blend in with the urban development.

MOR have worked closely with the landscaping architect throughout the SuDS strategy design process to ensure that the measures which have been suggested and incorporated have a high sense of public use. Throughout the site, there are green/blue roofs and bio-retention areas.

2.10.4 Biodiversity

The encouragement of biodiverse environments within urban environments is incredibly important. The SuDS measures must not only replicate the pre-development surface water runoff systems and treatment for rainfall, but they should also aim to replicate the existing habitats from the pre- development stage.

By incorporating large, landscaped areas, green/blue roofs throughout the site and the bioretention areas, biodiversity on site is promoted.

2.10.5 SuDS Conclusion

This section of the report has comprehensively discussed the various SuDS measures which can be applied to the site and then selected the applicable systems, based on the site layout. A wide range of measures have been employed.

Finally, the chosen SuDS measures have been analysed for various rainfall scenarios to ensure that all the SuDS design criteria are met an extensive range of SuDS measures are proposed with extensive coverage of the developed area of the site. These measures will be effective in treating rainfall on the site to meet GDSDS and CIRIA.

2.11 Maintenance and Management Plan

Refer to appendix E for details of maintenance requirements for individual SuDS drainage measures on the site.

2.12 Potential Future Expansion

No future expansion has been considered for the proposed drainage networks for the development.

3 FOUL WATER DRAINAGE DESIGN

3.1 General

The foul water drainage infrastructure has been designed in accordance with Irish Water Technical Standard for Wastewater Gravity Sewers (Document Number: IW-TEC-800-01) and the Irish Water Code of Practice for Wastewater Infrastructure (Document Number: IW-CDS-5030-03).

On the 5th of December 2023, a Pre-Connection Enquiry Form was submitted to Irish Water in respect of this development. Irish Water provided a Confirmation of Feasibility letter which stated that the proposed water connection was feasible without infrastructure upgrades and the wastewater connection was feasible subject to upgrades. A copy of the Irish Water Confirmation of Feasibility Letter is provided in Appendix A.

Table 3-1 outlines the parameters adopted in the design of the foul and process water drainage infrastructure.

Parameter Description	Assigned Value
Hydraulic Loading (Foul associated with domestic)	150 litres / person / day
Pipe Friction	1.5 mm
Minimum Velocity	0.7 m/s
Maximum Velocity	3.0 m/s
Peaking Factor (for domestic foul flows only)	6.0

|--|

3.2 Existing Services

There is an existing 300mm diameter concrete sewer running parallel to the western boundary of the site, on the Sandyford Road (R117). These underground drains carry foul water towards existing treatment areas in the Dublin area. Due to the relative levels of the existing drainage within the road and the proposed site levels, it is possible to achieve a gravity connection to the foul water drainage pipework installed.

3.3 Proposed Services

The proposed foul water drainage system is designed to comply with the 'Greater Dublin Strategic Drainage Study (GDSDS) Regional Drainage Policies Technical Document – Volume 2, New Developments, 2005' and the 'Greater Dublin Regional Code of Practice for Drainage Works, V6.0 2005'.

The proposed foul water drainage layout for the development is indicated on Malone O'Regan drawing no. SHB5-LDR-DR-MOR-CS-P3-130. Foul water from new apartment will be collected within a gravity drainage network and directed towards the existing public sewer system on Sandyford Road.

Calculations for the foul and process water pipe networks are provided in Appendix D.

3.4 Foul Water Demand Calculations

3.4.1 Residential Foul Water Demand

In accordance with the Irish Water Code of Practice for Wastewater Infrastructure works which carry domestic wastewater shall be designed to carry a wastewater volume of between 6 times the dry weather flow.

Dry weather flow (DWF) should be taken as 446 litres per dwelling.

DWF = 37 units x 446 l/dwelling = 16,502 l/day = 0.191 l/sec

Peak discharge = 6 x DWF = 1.146 l/sec

3.4.2 Community Centre Foul Water Demand

There is provision of 147m² of community, cultural and arts space within the development. The average and peak water demand rates were calculated in accordance with the Irish Water Code of Practice for Water Infrastructure guidelines which assumes a loading rater of 40 l/person/day for a Local Community Sports Club.

Total persons = 74 people (Assumed 1 person per $2m^2$ of floor area)

Average water demand = 40litres/person/day

Total daily discharge = 74 people x 40litres/person/day = 2960 litres/day

Average Hour Demand = 2960 litres/day / (24hr x 60min x 60sec) = 0.034 l/s

In accordance with Table 2.7 Commercial Peaking Factors, the peaking factor applied to commercial wastewater flow for an area of 0 - 5.5ha is $4.5 \times DWF$.

Peak discharge = 4.5 x DWF = 0.153 l/s

Average and peak foul discharge rates for the proposed development is summarised in Table 3-2.

Development Description	Average Demand (I/s)	Peak Demand (I/s)	
Proposed development of residential units	0.191	1.146	
Community Centre	0.034	0.153	
Total	0.225	1.299	

Table 3-2 - Average and Peak Foul Discharge Rates for All Development

3.5 Potential Future Expansion

No future expansion has been considered for the proposed drainage networks for the development.

4 WATER SUPPLY

4.1 General

The Proposed Development will use mains water. The proposed water supply infrastructure has been designed in accordance with the Irish Water Code of Practice for Water Infrastructure (Document Number: IW-CDS-5020-03).

On the 5th of December 2023, a Pre-Connection Enquiry Form was submitted to Irish Water in respect of this development. Irish Water provided a Confirmation of Feasibility letter which stated that the proposed water connection was feasible without infrastructure upgrades and the wastewater connection was feasible subject to upgrades.

A copy of the Irish Water Confirmation of Feasibility Letter is provided in Appendix A.

Figure 4-1 - Extract from Irish Water maps

4.2 Existing & Proposed Services

A 101.6mm diameter watermain is located running diagonally across the site. it is proposed to use this watermain and divert it around the new building as required.

The proposed watermain layout is indicated on drawing no. SHB5-LDR-DR-MOR-CS-P3-140 which accompanies this planning application.

4.3 Water Demand Calculations

4.3.1 Residential Water Demand

The average and peak water demand rates were calculated in accordance with the Irish Water Code of Practice for Water Infrastructure guidelines which assumes a loading rate of 150 litres per person per day and an occupancy rate of 2.7 persons per dwelling.

The average day/ peak week demand is taken as 1.25 times the average daily domestic demand. The peak demand is taken to be 5 times the average day/ peak week demand.

Total Daily Water Demand = 37 dwellings x 2.7 persons x 150 litres per day per person = 14,985 litres/day

Average Hour Demand = 14,985 litres/day / (24hr x 60min x 60sec) = 0.173 litres/sec

Average Day / Peak Week Demand = 0.173 litres/sec x 1.25 = 0.217 litres/sec

Peak Demand = 5 x 0.217 litres/sec = 1.084 litres/sec

4.3.2 Community Centre Water Demand

There is provision of 147m² of community, cultural and arts space.

Total persons = 74 people (Assumed 1person per 2m² of floor area)

Average water demand = 90litres/person/day

Total daily discharge = 74 people x 90litres/person/day = 6,660 litres/day = 0.077 litres/sec

Average Day Peak Week Demand = 0.077 x 1.25 = 0.096 litres/ sec

Peak Demand = 5 x 0.096 litres/sec = 0.482 litres/sec

Average and peak discharge rates for all existing and proposed developments are summarised in Table 4-1.

Development Description	Average Demand (I/s)	Peak Demand (I/s)	
Proposed development of residential units	0.217	1.084	
Community Centre	0.096	0.482	
Total	0.313	1.566	

Table 4-1 - Average and Peak Foul Discharge Rates for All Developments

Average and peak water demand rates have been calculated as follows, in accordance with the Irish Water Code of Practice for Water Infrastructure:

Domestic Water Demand

Total no. residents = 104

Irish Water Code of Practice for Water Infrastructure gives flow rate for Domestic Dwellings' as 150 litres per person per day.

Total Daily Water Demand = 104 people x 150 litres per day per person = 15,600 litres/day

Average Hour Demand = 15,600 litres/day / (24hr x 60min x 60sec) = 0.181 litres/sec

The average day, peak week demand is taken as 1.25 times the average daily domestic demand.

Average Day / Peak Week Demand = 0.181 litres/sec x 1.25 = 0.226 litres/sec

APPENDIX A – IRISH WATER CONFIRMATION OF FEASIBILITY

CONFIRMATION OF FEASIBILITY

Ray O'Connor

Malone O' Regan 2B Richview Office Park Clonskeagh Dublin 14 D14 XT57 **Uisce Éireann** Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Uisce Éireann PO Box 448 South City Delivery Office Cork City

www.water.ie

30 May 2024

Our Ref: CDS23009081 Pre-Connection Enquiry New Apartments At Lambs Cross, Hillcrest Road, Dublin

Dear Applicant/Agent,

We have completed the review of the Pre-Connection Enquiry.

Uisce Éireann has reviewed the pre-connection enquiry in relation to a Water & Wastewater connection for a Multi/Mixed Use Development of 39 unit(s) at New Apartments At Lambs Cross, Hillcrest Road, Dublin, (the **Development)**.

Based upon the details provided we can advise the following regarding connecting to the networks;

- Water Connection
 Feasible without infrastructure upgrade by
 Uisce Éireann
- The proposed Development indicates that Uisce Éireann assets are present on the site. The Developer has to demonstrate that proposed structures and works will not inhibit access for maintenance or endanger structural or functional integrity of the assets during and after the works. For design submissions and queries related to diversion/build near or over, please contact UÉ Diversion Team via email address <u>diversions@water.ie</u>
- Wastewater Connection Feasible Subject to upgrades
- In order to accommodate the proposed connection at the Premises, upgrade works are required downstream of the site. Uisce Éireann currently has a project on our current investment plan which will provide

Stiúrthóirí / Directors: Tony Keohane (Cathaoirleach / Chairman), Niall Gleeson (POF / CEO), Christopher Banks, Fred Barry, Gerard Britchfield, Liz Joyce, Patricia King, Eileen Maher, Cathy Mannion, Michael Walsh.

Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin, Ireland D01NP86

Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Uisce Éireann is a design activity company, limited by shares. Cláraithe in Éirinn Uimh.: 530363 / Registered in Ireland No.: 530363.

the necessary upgrade and capacity. Estimated completion date for the project is Q3 2028 (subject to change).

- Additionally, the existing 375mm gravity sewer adjacent to the site, has to be connected to the proposed downstream infrastructure.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Uisce Éireann infrastructure. Before the Development can be connected to our network(s) you must submit a connection application <u>and be granted and sign</u> a connection agreement with Uisce Éireann.

As the network capacity changes constantly, this review is only valid at the time of its completion. As soon as planning permission has been granted for the Development, a completed connection application should be submitted. The connection application is available at <u>www.water.ie/connections/get-connected/</u>

Where can you find more information?

- Section A What is important to know?
- Section B Details of Uisce Éireann's Network(s)

This letter is issued to provide information about the current feasibility of the proposed connection(s) to Uisce Éireann's network(s). This is not a connection offer and capacity in Uisce Éireann's network(s) may only be secured by entering into a connection agreement with Uisce Éireann.

For any further information, visit <u>www.water.ie/connections</u>, email <u>newconnections@water.ie</u> or contact 1800 278 278.

Yours sincerely,

Dermot Phelan Connections Delivery Manager

Section A - What is important to know?

What is important to know?	Why is this important?
Do you need a contract to connect?	 Yes, a contract is required to connect. This letter does not constitute a contract or an offer in whole or in part to provide a connection to Uisce Éireann's network(s).
	 Before the Development can connect to Uisce Éireann's network(s), you must submit a connection application <u>and</u> <u>be granted and sign</u> a connection agreement with Uisce Éireann.
When should I submit a Connection Application?	 A connection application should only be submitted after planning permission has been granted.
Where can I find information on connection charges?	Uisce Éireann connection charges can be found at: <u>https://www.water.ie/connections/information/charges/</u>
Who will carry out the connection work?	 All works to Uisce Éireann's network(s), including works in the public space, must be carried out by Uisce Éireann*.
	*Where a Developer has been granted specific permission and has been issued a connection offer for Self-Lay in the Public Road/Area, they may complete the relevant connection works
Fire flow Requirements	• The Confirmation of Feasibility does not extend to fire flow requirements for the Development. Fire flow requirements are a matter for the Developer to determine.
	What to do? - Contact the relevant Local Fire Authority
Plan for disposal of storm water	The Confirmation of Feasibility does not extend to the management or disposal of storm water or ground waters.
	• What to do? - Contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges.
Where do I find details of Uisce Éireann's network(s)?	Requests for maps showing Uisce Éireann's network(s) can be submitted to: <u>datarequests@water.ie</u>

What are the design requirements for the connection(s)?	 The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this Development shall comply with <i>the Uisce Éireann</i> <i>Connections and Developer Services Standard Details</i> <i>and Codes of Practice,</i> available at <u>www.water.ie/connections</u>
Trade Effluent Licensing	 Any person discharging trade effluent** to a sewer, must have a Trade Effluent Licence issued pursuant to section 16 of the Local Government (Water Pollution) Act, 1977 (as amended).
	 More information and an application form for a Trade Effluent License can be found at the following link: <u>https://www.water.ie/business/trade-effluent/about/</u>
	**trade effluent is defined in the Local Government (Water Pollution) Act, 1977 (as amended)

Section B – Details of Uisce Éireann's Network(s)

The map included below outlines the current Uisce Éireann infrastructure adjacent the Development: To access Uisce Éireann Maps email datarequests@water.ie

Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

Note: The information provided on the included maps as to the position of Uisce Éireann's underground network(s) is provided as a general guide only. The information is based on the best available information provided by each Local Authority in Ireland to Uisce Éireann.

Whilst every care has been taken in respect of the information on Uisce Éireann's network(s), Uisce Éireann assumes no responsibility for and gives no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided, nor does it accept any liability whatsoever arising from or out of any errors or omissions. This information should not be solely relied upon in the event of excavations or any other works being carried out in the vicinity of Uisce Éireann's underground network(s). The onus is on the parties carrying out excavations or any other works to ensure the exact location of Uisce Éireann's underground network(s) is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated. **APPENDIX B – ATTENUATION VOLUME CALCULATIONS**

Job Title Lambs Cross Blue roof J		Job no.	23006
By:	MG	Checked by:	DW
Date	21/10/2024	Rev number	1

Part 1 Permissible Runoff

The regression equation recommended for use by the Greater Dublin Strategic Drainage Study 2005 calculates a value, QBARural, which is sourced from the Institute of Hydrology Report 124. This value is the mean annual flood flow from a rural catchment in m³/s and is given by the equation:

QBARrural = 0.00108[Area^0.89] x [SAAR^1.17] x [Soil^2.17]

Rainfall Data				
M5-60 (1 hour - 5 years) mm	18.3			
M5-2D (2 days - 5 years) mm	67.9			
Ratio "r" (M5-60/ M5-2D)	0.27			
SAAR mm	1014			
Soil/ SPR mm	0.3			

Soil Type 4 - Based on SI findings - clay or loamy soils; high runoff potential

For 50 Ha Area ~ QBARrural =	0.141 m³/s	
QBARrural =	2.812 l/s/ha	Discharge should be limited to QBAR or 2 l/s/ha
For 0.35 Ha Area ~ QBARrural =	0.995 l/s	whichever is greater.

Part 2 Impermeable Area

Breakdown of the impermeable areas contributing to the surface water drainage network in each catchment with applied runoff coefficients is provided in the table below

	Type of Surface		Area sq.m	Run-off	Equivalent	Urban Creep	Climate	Overall
Total Alea sy.iii				Coefficient	Impermeable	Allowance (10%)	Change (20%)	Impermeable
	Poof	Standard roof (25%)	0.00	0.95	0.00	0.00	0.00	
	KUUI	Green Roof (75%)	849.64	0.60	509.78	560.76	672.91	
3,538.00	Permeable Paving inc. areas from hardstanding		0.00	0.50	0.00	0.00	0.00	672.91
ha	Landscaped Areas ins. areas from							ha
	hardstanding Hardstanding		0.00	0.20	0.00	0.00	0.00	0.07
0.35								
			0.00	0.90	0.00	0.00	0.00	

These calculations are based on "Engineering Hydrology" by E.M.Wilson (4th Edition) Ratio R (%) - Refer to Table 2.9 of "Engineering Hydrology M10/M100 - Refer to Table 2.7 of "Engineering Hydrology

Part 3 **Attenuation Volume Required**

Rainfall Duration (D)	Ratio r (%)	M5 (mm)	M10 (mm)	Area MT		Inflow "I"	Outflow "O"	Capacity Required	
	Table 2.9	(M5-2D*Ratio)/100	Table 2.7		M5*M10	MT* Impermeable Area	(QBARrural/10 00)*60	"I"-"O" ="S"	
1 min	3	2.0	1.15	1	2.343	1.576	0.059684789	1.517	
2min	5	3.4	1.15	1	3.904	2.627	0.119369578	2.508	
5 min	9	6.1	1.16	1	7.089	4.770	0.298423946	4.472	
10 min	12.9	8.8	1.17	1	10.248	6.896	0.596847892	6.299	
15 min	15.5	10.5	1.18	1	12.419	8.357	0.895271837	7.462	
30 min	20.7	14.1	1.18	1	16.585	11.160	1.790543675	9.370	
60 min	27	18.3	1.18	1	21.633	14.557	3.58108735	10.976	
2 hour	35	23.8	1.18	1	28.043	18.870	7.1621747	11.708	
4 hour	44	29.9	1.17	1	34.955	23.522	14.3243494	9.197	
6 hour	51	34.6	1.17	1	40.516	27.264	21.4865241	5.777	
12 hour	65	44.1	1.16	1	51.197	34.451	42.9730482	-8.522	
24 hour	83	56.4	1.15	1	64.811	43.612	85.94609639	-42.334	
48 hour	106	72.0	1.14	1	82.050	55.213	171.8921928	-116.679	
0			•	•	·	•	•		

Size of Attenuation for 1 in 10 year flood event m³

1 in 30 Years	-							
Rainfall								Capacity
Duration (D)	Ratio r (%)	M5 (mm)	M30 (mm)	Area	MT	Inflow "I"	Outflow "O"	Required
	Table 2.7	(M5-2D*Patio)/100	Table 2.9		M5*M20	MT* Impermeable	(QBARrural/10	"!"-"0" -"9"
1 min	3	20	1 43	1	2 913	1 960	0.059684789	1 900
2min	5	3.4	1.43	1	4.855	3.267	0.119369578	3.148
5 min	9	6.1	1.48	1	9.044	6.086	0.298423946	5.788
10 min	12.9	8.8	1.51	1	13.226	8.900	0.596847892	8.303
15 min	15.5	10.5	1.54	1	16.208	10.906	0.895271837	10.011
30 min	20.7	14.1	1.54	1	21.645	14.565	1.790543675	12.775
60 min	27	18.3	1.54	1	28.233	18.998	3.58108735	15.417
2 hour	35	23.8	1.51	1	35.885	24.148	7.1621747	16.985
4 hour	44	29.9	1.5	1	44.814	30.156	14.3243494	15.832
6 hour	51	34.6	1.48	1	51.251	34.487	21.4865241	13.001
12 hour	65	44.1	1.45	1	63.996	43.064	42.9730482	0.090
24 hour	83	56.4	1.41	1	79.463	53.472	85.94609639	-32.474
48 hour	106	72.0	1.39	1	100.044	67.321	171.8921928	-104.571

16.985

Size of Attenuation for 1 in 30 year flood event m³

1 in 100 Years Rainfall Capacity M100 (mm) мт Inflow "I" Outflow "O" Duration (D) Ratio r (%) M5 (mm) Required Area MT* Impermeable (QBARrural/10 "I"-"0" ="S" (M5-2D*Ratio)/100 M5*M100 00)*60 Table 2.7 Table 2.9 Area 3.565 1 min 2.0 1.75 2.399 0.059684789 2.339 3 1 2min 5 3.4 1.77 1 6.009 4.044 0.119369578 3.924 9 6.1 1.86 11.366 7.649 0.298423946 7.350 5 min 1 10 min 12.9 8.8 1 16.642 11.199 0.596847892 10.602 1.9 15 min 15.5 10.5 1.96 1 20.628 13.881 0.895271837 12.986 30 min 1.97 18.632 1.790543675 16.842 14.1 1 27.689 20.7 36.299 60 min 27 18.3 1.98 1 24.426 3.58108735 20.845 35 1.93 7.1621747 23.702 2 hour 23.8 1 45.866 30.864 4 hour 44 29.9 1.89 1 56.466 37.996 14.3243494 23.672 51 34.6 1.85 1 64.064 43.109 21.4865241 21.623 6 hour 9.594 12 hour 65 44.1 1.77 1 78.119 52.567 42.9730482 24 hour 83 56.4 1.72 1 96.934 65.228 85.94609639 -20.718 48 hour 106 1.69 81.850 171.8921928 72.0 1 121.636 -90.042 Size of Attenuation for 1 in 100 year flood event m³ 23.70

Part 4 Interception Storage

To prevent pollitant or sediments discharging into water courses the GDSDS required "interception storage" to be incorporated into the drainage design for the development. The volume of interception required is based on the 5-10mm of rainfall depth from 80% of the runoff from impermeable areas. The interception volume attributable to each of the SuDS features consists of the volyme of water that can infiltrate to the ground, the quanity that evaporates into the atmosphere and the volyme lost through transpiration in plants and vegitation. Additionally, there will be some loses of water due to absorption and westting of stone and soil media.

<u>Required Interception Storage</u> Overall Impermeable area is	672.9 m²	including 10% for urban creep	
Therefore, the total interception storage required is 'overall imp climate change'	oermeable area x 80	% x 0.005 x 1.2 for	3.23 m³
Interception Storage Provided	*Only fill in	SuDS on your site	

 Green Roof A 'Bauder Sedume' or equivalent design to retain 30 I/m²
 Area
 849.64 m²

 of rainwater will be used on roof level
 Interception Store 30 I/m²
 0.03 I/m²

 Storage Volume
 25.49 m³

Total interception volume provided for the overall site which exceeds the required volume calculated of

25.49 m³ 3.23 m³

Job Title	Lambs Cross	Job no.	23006
By:	MG	Checked by:	DW
Date	21/10/2024	Rev number	1

Part 1 Permissible Runoff

The regression equation recommended for use by the Greater Dublin Strategic Drainage Study 2005 calculates a value, QBARural, which is sourced from the Institute of Hydrology Report 124. This value is the mean annual flood flow from a rural catchment in m³/s and is given by the equation:

QBARrural = 0.00108[Area^0.89] x [SAAR^1.17] x [Soil^2.17]

Rainfall Data						
M5-60 (1 hour - 5 years) mm	18.3					
M5-2D (2 days - 5 years) mm	67.9					
Ratio "r" (M5-60/ M5-2D)	0.27					
SAAR mm	1014					
Soil/ SPR mm	0.3					

Soil Type 4 - Based on SI findings - clay or loamy soils; high runoff potential

For 50 Ha Area ~ QBARrural =	0.141 m ³ /s	
QBARrural =	2.812 l/s/ha	Discharge should be limited to QBAR or 2 l/s/ha
For 0.35 Ha Area ~ QBARrural =	0.995 l/s	whichever is greater.

Part 2 Impermeable Area

Breakdown of the impermeable areas contributing to the surface water drainage network in each catchment with applied runoff coefficients is provided in the table below

Total Area ca m	Type of Surface		Area ca m Run-off		Equivalent	Urban Creep	Climate	Overall
rotal Alea sq.iii			Alea sy.iii	Coefficient	Impermeable	Allowance (10%)	Change (20%)	Impermeable
	Poof	Standard roof (25%)	283.21	0.95	269.05	295.96	355.15	
	KUUI	Green Roof (75%)	0.00	0.60	0.00	0.00	0.00	
3,538.00	Permeable Paving inc. areas from hardstanding		702.48	0.50	351.24	386.36	463.63	1414.32
ha	Jandssanod Ar	inc. areas from						ha
	Landscaped Areas Inc. areas from		1544.64	0.20	308.93	339.82	407.78	0.14
0.25	narustanung	narustanung						
0.55	Hardstanding		158.04	0.90	142.23	156.46	187.75	

These calculations are based on "Engineering Hydrology" by E.M.Wilson (4th Edition) Ratio R (%) - Refer to Table 2.9 of "Engineering Hydrology M10/M100 - Refer to Table 2.7 of "Engineering Hydrology

Part 3 **Attenuation Volume Required**

1 in 10 Years								
Rainfall Duration (D)	Ratio r (%)	M5 (mm)	M10 (mm)	Area	мт	Inflow "I"	Outflow "O"	Capacity Required
	Table 2.9	(M5-2D*Ratio)/100	Table 2.7		M5*M10	MT* Impermeable Area	(QBARrural/10 00)*60	"l"-"0" ="S"
1 min	3	2.0	1.15	1	2.343	3.313	0.059684789	3.253
2min	5	3.4	1.15	1	3.904	5.522	0.119369578	5.402
5 min	9	6.1	1.16	1	7.089	10.026	0.298423946	9.727
10 min	12.9	8.8	1.17	1	10.248	14.494	0.596847892	13.897
15 min	15.5	10.5	1.18	1	12.419	17.564	0.895271837	16.669
30 min	20.7	14.1	1.18	1	16.585	23.457	1.790543675	21.666
60 min	27	18.3	1.18	1	21.633	30.596	3.58108735	27.015
2 hour	35	23.8	1.18	1	28.043	39.661	7.1621747	32.499
4 hour	44	29.9	1.17	1	34.955	49.437	14.3243494	35.113
6 hour	51	34.6	1.17	1	40.516	57.302	21.4865241	35.816
12 hour	65	44.1	1.16	1	51.197	72.408	42.9730482	29.435
24 hour	83	56.4	1.15	1	64.811	91.663	85.94609639	5.716
48 hour	106	72.0	1.14	1	82.050	116.045	171.8921928	-55.847
Size of Atten	uation for 1 in	10 year flood event m	3					35.816

Size of Attenuation for 1 in 10 year flood event m³

Rainfall								Capacity
Duration (D)	Ratio r (%)	M5 (mm)	M30 (mm)	Area	мт	Inflow "I"	Outflow "O"	Required
	Table 2.7	(M5-2D*Ratio)/100	Table 2.9		M5*M30	MT* Impermeable Area	(QBARrural/10 00)*60	"I"-"0" ="S"
1 min	3	2.0	1.43	1	2.913	4.120	0.059684789	4.060
2min	5	3.4	1.43	1	4.855	6.866	0.119369578	6.747
5 min	9	6.1	1.48	1	9.044	12.791	0.298423946	12.493
10 min	12.9	8.8	1.51	1	13.226	18.706	0.596847892	18.109
15 min	15.5	10.5	1.54	1	16.208	22.923	0.895271837	22.028
30 min	20.7	14.1	1.54	1	21.645	30.613	1.790543675	28.823
60 min	27	18.3	1.54	1	28.233	39.930	3.58108735	36.349
2 hour	35	23.8	1.51	1	35.885	50.753	7.1621747	43.591
4 hour	44	29.9	1.5	1	44.814	63.381	14.3243494	49.057
6 hour	51	34.6	1.48	1	51.251	72.485	21.4865241	50.998
12 hour	65	44.1	1.45	1	63.996	90.510	42.9730482	47.537
24 hour	83	56.4	1.41	1	79.463	112.386	85.94609639	26.440
48 hour	106	72.0	1.39	1	100.044	141.494	171.8921928	-30.399

50.998

Size of Attenuation for 1 in 30 year flood event m³

1 in 100 Years Rainfall Capacity M100 (mm) мт Inflow "I" Outflow "O" Duration (D) Ratio r (%) M5 (mm) Required Area MT* Impermeable (QBARrural/10 "I"-"0" ="S" (M5-2D*Ratio)/100 M5*M100 00)*60 Table 2.7 Table 2.9 Area 3.565 1 min 2.0 1.75 5.042 0.059684789 4.982 3 1 2min 5 3.4 1.77 1 6.009 8.499 0.119369578 8.379 9 6.1 1.86 11.366 16.076 0.298423946 15.777 5 min 1 23.537 0.596847892 10 min 12.9 8.8 1 16.642 22.941 1.9 15 min 15.5 10.5 1.96 1 20.628 29.175 0.895271837 28.279 30 min 1.97 39.161 1.790543675 14.1 1 27.689 37.370 20.7 36.299 51.339 3.58108735 47.758 60 min 27 18.3 1.98 1 57.707 35 1.93 7.1621747 2 hour 23.8 1 45.866 64.870 4 hour 44 29.9 1.89 1 56.466 79.860 14.3243494 65.536 51 34.6 1.85 1 64.064 90.606 21.4865241 69.120 6 hour 12 hour 65 44.1 1.77 1 78.119 110.485 42.9730482 67.512 24 hour 83 56.4 1.72 1 96.934 137.095 85.94609639 51.149 48 hour 106 1.69 172.032 171.8921928 72.0 1 121.636 0.140 Size of Attenuation for 1 in 100 year flood event m³ 69.120

Part 4 Interception Storage

To prevent pollitant or sediments discharging into water courses the GDSDS required "interception storage" to be incorporated into the drainage design for the development. The volume of interception required is based on the 5-10mm of rainfall depth from 80% of the runoff from impermeable areas. The interception volume attributable to each of the SuDS features consists of the volyme of water that can infiltrate to the ground, the quanity that evaporates into the atmosphere and the volyme lost through transpiration in plants and vegitation. Additionally, there will be some loses of water due to absorption and westting of stone and soil media.

Required Interception Storage Overall Impermeable area is

1414.3 m² including 10% for urban creep Therefore, the total interception storage required is 'overall impermeable area x 80% x 0.005 x 1.2 for 6.79 m³ climate change'

Interception Storage Provided

*Only fill in SuDS on your site

	Area	468.3	m²	
Pormophic Paying	Stone Layer 100mm deep	0.1	m	
	Void Ratio	30%		
	Storage Volume	14.04954	m³	*Storage depth will depend on your site
	Area	0.0	m²	
Swale	*75mm	0	m	
	Storage Volume	0	m³	
Pio Potentian Area/	Area	147.6	m²	
Raingarden	Depth of subgrade	0.1	m	
	Storage Volume	14.7643	m³	

Total interception volume provided for the overall site which exceeds the required volume calculated of

28.81 m³ 6.79 m³

APPENDIX C – SURFACE WATER PIPE NETWORK CALCULATIONS

Causeway	Remco Ltd t/a Malone			File: 2024-06-17 Flow.pfdPageNetwork: Storm NetworkKezia Adanza24/10/202424/10/2024			ge 1
			<u>Desig</u>	<u>n Settings</u>			
Rainfall Methodology Return Period (years) Additional Flow (%) FSR Region M5-60 (mm) Ratio-R CV Time of Entry (mins)	FSR 2 0 Scotland 18.300 0.270 1.000 4.00	and Irela	Ind	Maximum T Mi Iı Enfor	ime of Conce Maximum F Minimur C nimum Back Preferred C nclude Interr ce best pract	entration (mins) Bainfall (mm/hr) n Velocity (m/s) onnection Type drop Height (m) Cover Depth (m) nediate Ground ice design rules	30.00 50.0 1.00 Level Inverts 0.500 1.200 √
			<u>N</u>	lodes			
	Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Depth (m)	
	SW01 SW02	0.018 0.018	4.00 4.00	124.500 125.000	1400 1400	1.425 2.164	
	SW03 SW04	0.018 0.018	4.00 4.00	125.000 123.600	1400 1400	2.251 1.425	
	SW05	0.018	4.00	123.600	1400	1.516	

<u>Links</u>

4.00 123.430

4.00 123.430

123.430

123.200

120.000

1400

1400

1400

1400

1400

1.425

1.470

1.500

1.500

0.519

SW06

SW07

SW08

SW09-HB

Headwall

0.018

0.018

Name	US	DS	Length	US IL	DS IL	Fall	Slope	Dia	Rain
	Node	Node	(m)	(m)	(m)	(m)	(1:X)	(mm)	(mm/hr)
1.000	SW01	SW02	36.998	123.075	122.836	0.239	155.0	225	50.0
1.001	SW02	SW03	13.004	122.836	122.749	0.087	150.0	225	50.0
1.002	SW03	SW06	57.040	122.749	122.005	0.744	76.7	225	50.0
2.000	SW04	SW05	13.687	122.175	122.084	0.091	150.0	225	50.0
2.001	SW05	SW06	7.329	122.084	122.005	0.079	92.8	225	50.0
1.003	SW06	SW07	4.501	122.005	121.960	0.045	100.0	225	50.0
1.004	SW07	SW08	2.677	121.960	121.930	0.030	89.2	300	50.0
1.005	SW08	SW09-HB	13.196	121.930	121.700	0.230	57.4	300	50.0
1.006	SW09-HB	Headwall	11.093	121.700	119.481	2.219	5.0	300	50.0

Name	Vel	Flow	US	DS
	(m/s)	(I/s)	Depth	Depth
			(m)	(m)
1.000	1.047	3.3	1.200	1.939
1.001	1.065	6.5	1.939	2.026
1.002	1.495	9.8	2.026	1.200
2.000	1.065	3.3	1.200	1.291
2.001	1.358	6.5	1.291	1.200
1.003	1.307	19.5	1.200	1.245
1.004	1.665	22.8	1.170	1.200
1.005	2.079	22.8	1.200	1.200
1.006	7.075	22.8	1.200	0.219

Ca	lse	way	Remco	Ltd t/	a Malone		File: Netw Kezia 24/1	2024-06-1 vork: Storn Adanza 0/2024	7 Flow.p n Netwo	ofd ork	Pa	ge 2	
					<u> </u>	Pipeline	Schedu	<u>ule</u>					
	Link	Length	Slope	Dia	US CL	US	IL	US Depth	DS C	Ľ	DS IL	DS Dep	oth
		(m)	(1:X)	(mm) (m)	(m	I)	(m)	(m)		(m)	(m)	
	1.000	36.998	155.0	22.	5 124.50	0 123.0	075	1.200	125.0	00	122.836	5 1.9	39
	1.001	13.004	150.0	22	5 125.00	0 122.8	836	1.939	125.0	00	122.749) 2.0	26
	1.002	57.040	76.7	22	5 125.00	0 122.	749	2.026	123.4	30	122.005	5 1.2	200
	2.000	13.687	150.0	22	5 123.60	0 122.	175	1.200	123.6	00	122.084	i 1.2	.91
	2.001	7.329	92.8	22	5 123.60	0 122.0	084	1.291	123.4	30	122.005	o 1.2	200
	1.003	4.501	100.0	22	5 123.43	0 122.0	005	1.200	123.4	30	121.960) 1.2	45
	1.004	2.677	89.2	30	0 123.43	0 121.9	960	1.170	123.4	30	121.930) 1.2	200
	1.005	13.196	57.4	30	0 123.43	0 121.9	930	1.200	123.2	00	121.700) 1.2	200
	1.006	11.093	5.0	30	0 123.20	0 121.	700	1.200	120.0	00	119.481	L 0.2	19
	Link	US	D	ia	Node	МН		DS	Dia	N	lode	MH	
		Node	e (m	m)	Туре	Туре		Node	(mm)	1	Гуре	Туре	
	1.000) SW01	14	100	Manhole	Adoptal	ole S	W02	1400	Ma	anhole	Adoptable	e
	1.001	SW02	14	100	Manhole	Adoptal	ole S	SW03	1400	Ma	anhole	Adoptable	e
	1.002	2 SW03	14	100	Manhole	Adoptal	ole S	W06	1400	Ma	anhole	Adoptable	e
	2.000) SW04	14	100	Manhole	Adoptal	ole S	W05	1400	Ma	anhole	Adoptable	e
	2.001	. SW05	14	100	iviannole	Adopta	ole S	W06	1400	IVI	annole	Adoptable	e
	1.003	SWU6	14	100	Manhole	Adopta	ole S		1400	IVI	annoie	Adoptable	e
	1.004		14	100	wannole	Adoptar	ole S	80008	1400	IVI	annoie	Adoptable	e
	1.005				N 4	A	- L- C		4 4 0 0			A	_
	1 000		14 UD 17	100	Manhole	Adoptal	ole S	SW09-HB	1400	Ma	anhole	Adoptable	e
	1.006	5 SW08 5 SW09-	14 HB 14	100 100	Manhole Manhole	Adoptal Adoptal	ole S ole F	SW09-HB Headwall	1400 1400	Ma Ma	anhole anhole	Adoptable Adoptable	e
	1.006	5 SW08 5 SW09-	14 HB 14	100 100	Manhole Manhole <u>Nanhole</u>	Adoptal Adoptal <u>Manhole</u>	ole S ole H <u>Sched</u>	SW09-HB Headwall I <mark>ule</mark>	1400 1400	Ma Ma	anhole anhole	Adoptable Adoptable	e e
Node	1.006 e E	asting	14 HB 14 North	100 100	Manhole Manhole <u>N</u> CL (m)	Adoptal Adoptal <u>Adoptal</u> <u>Manhole</u> Depth (m)	ole S ole H <u>Sched</u> Dia	SW09-HB Headwall I <u>ule</u> a Con	1400 1400	Ma Ma	anhole anhole Link	Adoptable Adoptable IL (m)	e Dia
Nod SW0	1.006 e E 1 718	asting (m) 142.930	14 HB 14 North (m 725405	100 100 ning) 5.380	Manhole Manhole <u>CL</u> (m) 124.500	Adoptal Adoptal <u>Manhole</u> Depth (m) 1.425	ole S ole H Sched Dia (mn 140	SW09-HB Headwall I <u>ule</u> a Con n) D0	1400 1400	Ma Ma	anhole anhole Link	Adoptable Adoptable IL (m)	e Dia (mm)
Nod SW0	1.006 e E 1 718	asting (m) 142.930	14 HB 14 North (m 725405	100 100 ning) 5.380	Manhole Manhole <u>CL</u> (m) 124.500	Adoptal Adoptal <u>Manhole</u> Depth (m) 1.425	ole S ole H Sched Dia (mn 140	SW09-HB Headwall I <u>ule</u> a Con n) D0	1400 1400	Ma Ma	anhole anhole Link	Adoptable Adoptable IL (m)	e Dia (mm)
Nod SW0	1.006 e E 1 718	asting (m) 142.930	14 HB 14 North (m 725405	100 100 100 100 100 100	Manhole Manhole <u>CL</u> (m) 124.500	Adoptal Adoptal <u>Manhole</u> Depth (m) 1.425	ole S ole H Sched Dia (mn 140	SW09-HB Headwall Iule a Con n) D0	1400 1400	Ma Ma	anhole anhole Link	Adoptable Adoptable IL (m)	e Dia (mm)
Node SW0	1.006 e E 1 718	asting (m) 142.930	14 HB 14 North (m 725405	100 100 hing) 5.380	Manhole Manhole <u>CL</u> (m) 124.500	Adoptal Adoptal <u>Manhole</u> Depth (m) 1.425	ole S ole H Sched Dia (mn 140	SW09-HB Headwall a Con n) D0	1400 1400	Ma Ma	Link	Adoptable Adoptable IL (m) 123.075	e Dia (mm)
Nod SW0 SW0	1.006 e E 1 718 2 718	asting (m) 142.930	14 HB 14 North (m 725405	100 100 100 100 100 5.380	Manhole Manhole <u>CL</u> (m) 124.500 125.000	Adoptal Adoptal <u>Manhole</u> Depth (m) 1.425 2.164	ole S ole H Sched Dia (mn 140	5W09-HB Headwall Iule a Con m) D0	1400 1400	Ма Ма Is	Link 1.000	Adoptable Adoptable IL (m) 123.075 122.836	e Dia (mm) 225 225
Node SWO SWO	1.006 e E 1 718 2 718	asting (m) 142.930	14 HB 14 North (m 725405	100 100 100 5.380	Manhole Manhole <u>CL</u> (m) 124.500	Adoptal Adoptal <u>Manhole</u> Depth (m) 1.425 2.164	ole S ole H Sched Dia (mn 140	SW09-HB Headwall a Con n) D0 (D0 1	1400 1400	Ma Ma I s	Link 1.000	Adoptable Adoptable IL (m) 123.075 122.836	e Dia (mm) 225 225
Nod SWO SWO	1.006 e E 1 718 2 718	asting (m) 142.930	14 HB 14 North 725405	100 100 100 5.380	Manhole Manhole <u>CL</u> (m) 124.500	Adoptal Adoptal <u>Manhole</u> Depth (m) 1.425 2.164	ole S ole H Sched Dia (mn 140	SW09-HB Headwall a Con n) D0 (D0 1	1400 1400	Ma Ma Is 0 1	Link 1.000	Adoptable Adoptable IL (m) 123.075 122.836	e Dia (mm) 225 225
Nod SWO SWO	1.006 e E 1 718 2 718	asting (m) 142.930	14 HB 14 North 725405	100 100 100 100 5.380	Manhole Manhole <u>CL</u> (m) 124.500	Adoptal Adoptal <u>Manhole</u> Depth (m) 1.425 2.164	ole S ole H Sched Dia (mn 140	SW09-HB Headwall a Con n) D0 (D0 1	1400 1400	Ma Ma Is 0 1	Link 1.000 1.001	Adoptable Adoptable IL (m) 123.075 122.836	e Dia (mm) 225 225 225
Node SW0 SW0	1.006 e E 1 718 2 718 3 718	asting (m) 142.930 145.480	14 HB 14 North (m 725405 725368	100 100 100 5.380 3.470	Manhole Manhole <u>CL</u> (m) 125.000 125.000	Adoptal Adoptal <u>Manhole</u> Depth (m) 1.425 2.164 2.251	ole S ole H Sched Dia (mn 140 140	SW09-HB Headwall Iule a Con m) D0 (D0 1 (D0 1 (D0 1 (D0 1 (D0 1)	1400 1400	Ma Ma ss 0 1 1	Link 1.000 1.000 1.001 1.001	Adoptable Adoptable IL (m) 123.075 122.836 122.836 122.749	e Dia (mm) 225 225 225 225
Noda SWO SWO	1.006 e E 1 718 2 718 3 718	asting (m) 142.930 145.480	14 HB 14 North 725405 725368	100 100 100 5.380 3.470 5.680	Manhole Manhole <u>CL</u> (m) 124.500 125.000	Adoptal Adoptal Manhole Depth (m) 1.425 2.164 2.251	ole S ole H Sched Dia (mn 140 140	5W09-HB Headwall Iule a Con m) D0 (00 1 00 1 00 1	1400 1400	Ma Ma ss 0 1 1	Link 1.000 1.000 1.001 1.001	Adoptable Adoptable IL (m) 123.075 122.836 122.836 122.749	e Dia (mm) 225 225 225 225
Noda SWO SWO	1.006 e E 1 718 2 718 3 718	asting (m) 142.930 145.480	14 HB 14 North (m 725405 725368	100 100 100 5.380 3.470 5.680	Manhole Manhole <u>CL</u> (m) 124.500 125.000	Adoptal Adoptal Manhole Depth (m) 1.425 2.164 2.251	ole S ole H Sched Dia (mn 140 140	SW09-HB Headwall Iule a Con m) D0 (D0 1 (D0 1 (D0 1 (D0 1 (D0 1)	$\frac{1400}{1400}$	Ma Ma ss 0 1 1	Link 1.000 1.001 1.001	Adoptable Adoptable IL (m) 123.075 122.836 122.836 122.749	e Dia (mm) 225 225 225 225
Nod SWO SWO	1.006 e E 1 718 2 718 3 718	asting (m) 142.930 145.480 158.360	14 HB 14 North 725405 725368	100 100 100 5.380 3.470 5.680	Manhole Manhole <u>CL</u> (m) 124.500 125.000	Adoptal Adoptal <u>Manhole</u> Depth (m) 1.425 2.164 2.251	ole S ole H Sched Dia (mn 140 140	5W09-HB Headwall <u>ule</u> a Con n) 00 (00 1 00 1	1400 1400	Ma Ma s 0 1 1 0 1	Link 1.000 1.001 1.001 1.001 1.002	Adoptable Adoptable IL (m) 123.075 122.836 122.836 122.749	e e Dia (mm) 225 225 225 225 225
Node SWO SWO SWO	1.006 e E 1 718 2 718 3 718 4 718	asting (m) 142.930 145.480 158.360 216.163	14 HB 14 North 725405 725366 725366	100 100 100 5.380 5.380 5.680 5.680	Manhole Manhole <u>CL</u> (m) 124.500 125.000 125.000	Adoptal Adoptal <u>Manhole</u> Depth (m) 1.425 2.164 2.251	ole S ole H Sched Dia (mn 140 140 140	5W09-HB Headwall Iule a Con m) 00 (00 1 00 1 00 1 00 1 00 1	1400 1400	Ma Ma s 0 1 1 0 1	Link 1.000 1.000 1.001 1.001 1.001 1.002	Adoptable Adoptable IL (m) 123.075 122.836 122.836 122.749 122.749	e e Dia (mm) 225 225 225 225 225 225
Node SWO SWO SWO	1.006 e E 1 718 2 718 3 718 4 718	asting (m) 142.930 145.480 158.360 216.163	14 HB 14 North 725405 725368 725368	100 100 100 5.380 5.380 5.680 5.680	Manhole Manhole <u>CL</u> (m) 124.500 125.000 125.000	Adoptal Adoptal <u>Manhole</u> Depth (m) 1.425 2.164 2.251	ole S ole H Sched Dia (mn 140 140 140	5W09-HB Headwall Iule a Con m) D0 (00 1 (00 1 (00 1 (00 (00 (00 (1400 1400	Ma Ma s 0 1 1 0 1	Link 1.000 1.000 1.001 1.001 1.001 1.002	Adoptable Adoptable IL (m) 123.075 122.836 122.749 122.749	e e Dia (mm) 225 225 225 225 225
Noda SWO SWO SWO	1.006 e E 1 718 2 718 3 718 4 718	asting (m) 142.930 145.480 158.360 216.163	14 HB 14 North 725405 725368 725368	100 100 100 5.380 3.470 5.680 3.300	Manhole Manhole <u>CL</u> (m) 124.500 125.000 125.000	Adoptal Adoptal <u>Manhole</u> Depth (m) 1.425 2.164 2.251	ole S ole H Sched Dia (mn 140 140 140	5W09-HB Headwall ule a Con m) D0 (00 1 00 1 00 1 00 1 00 1	$\frac{1400}{1400}$	Ma Ma s 0 1 1 0	Link 1.000 1.000 1.001 1.001 1.001 1.002	Adoptable Adoptable IL (m) 123.075 122.836 122.749 122.749	e e Dia (mm) 225 225 225 225 225 225
Noda SWO SWO SWO	1.006 e E 1 718 2 718 3 718 4 718	asting (m) 142.930 145.480 158.360 216.163	14 HB 14 North (m 725405 725368 725368	100 100 100 5.380 5.380 5.680 5.680	Manhole Manhole CL (m) 124.500 125.000 125.000	Adoptal Adoptal <u>Manhole</u> Depth (m) 1.425 2.164 2.251 1.425	ole S ole H Sched Dia (mn 140 140 140	SW09-HB Headwall Iule a Con n) D0 (00 1 00 1 00 1 00 1 00 0	1400 1400	Ma Ma s 0 1 1 0 1 0 0	Link 1.000 1.001 1.001 1.002 2.000	Adoptable Adoptable IL (m) 123.075 122.836 122.749 122.749 122.749	e e Dia (mm) 225 225 225 225 225 225 225
Node SWO SWO SWO	1.006 e E 1 718 2 718 3 718 4 718 5 718	 sw08 sW09- asting (m) 142.930 145.480 158.360 216.163 204.356 	14 HB 14 North (m 725405 725366 725366	100 100 100 5.380 5.380 3.470 5.680 3.300	Manhole Manhole <u>CL</u> (m) 124.500 125.000 125.000 123.600 123.600	Adoptal Adoptal <u>Manhole</u> Depth (m) 1.425 2.164 2.251 1.425	ole S ole H Sched Dia (mn 140 140 140 140	5W09-HB Headwall Iule a Con n) 00 (00 1 00 1 00 1 00 0 00 0 00 0 00 0 00 0 00 0	$\frac{1400}{1400}$	Ma Ma s 0 1 1 0 1 0 1	Link 1.000 1.001 1.001 1.001 1.002 2.000 2.000	Adoptable Adoptable IL (m) 123.075 122.836 122.749 122.749 122.749	e e Dia (mm) 225 225 225 225 225 225 225 225
Noda SWO SWO SWO	1.006 e E 1 718 2 718 3 718 4 718 5 718	asting (m) 142.930 145.480 158.360 216.163 204.356	14 HB 14 North 725405 725368 725368 725408	100 100 100 5.380 5.380 3.470 5.680 3.300	Manhole Manhole <u>CL</u> (m) 124.500 125.000 123.600 123.600	Adoptal Adoptal <u>Manhole</u> Depth (m) 1.425 2.164 2.251 1.425	ole S ole H Sched Dia (mn 140 140 140 140	5W09-HB Headwall I <u>ule</u> a Con m) 00 (00 1 00 1 00 1 00 0 00 0 00 0 00 0	1400 1400 Innection $ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Ma Ma 0 1 1 0 1 0 1	Link 1.000 1.001 1.001 1.001 1.001 2.000 2.000 2.000	Adoptable Adoptable IL (m) 123.075 122.836 122.749 122.749 122.749 122.749	e e Dia (mm) 225 225 225 225 225 225 225 225 225
Noda SWO SWO SWO	1.006 e E 1 718 2 718 3 718 4 718 5 718	asting (m) 142.930 145.480 158.360 216.163 204.356	14 HB 14 North (m 725405 725368 725368 725408	100 100 100 5.380 5.380 3.470 5.680 3.300	Manhole Manhole <u>CL</u> (m) 124.500 125.000 123.600 123.600	Adoptal Adoptal <u>Manhole</u> Depth (m) 1.425 2.164 2.251 1.425 1.425	ole S ole H Sched Dia (mn 140 140 140 140	SW09-HB Headwall ule a Con n) 00 (00 1 00 1 00 1 00 1 00 0 00 0 0	$\frac{1400}{1400}$	Ma Ma s 0 1 1 0 1 1 0 1	Link Link Link L.000 L.000 L.001 L.001 L.001 L.001 L.002 L.000 L.000	Adoptable Adoptable IL (m) 123.075 122.836 122.749 122.749 122.749 122.749	e e Dia (mm) 225 225 225 225 225 225 225 225
Noda SWO SWO SWO	1.006 e E 1 718 2 718 3 718 4 718 5 718	 sw08 sW09- asting (m) 142.930 145.480 158.360 216.163 204.356 	14 HB 14 North 725405 725368 725368 725408	100 100 100 5.380 5.380 3.470 5.680 3.300	Manhole Manhole <u>CL</u> (m) 124.500 125.000 125.000 123.600 123.600	Adoptal Adoptal <u>Manhole</u> Depth (m) 1.425 2.164 2.251 1.425 1.516	ole S ole H Sched Dia (mn 140 140 140 140	5W09-HB Headwall <u>ule</u> a Con m) D0 (00 1 00 1 00 1 00 0 00 0 00 0 00 0 0	$\frac{1400}{1400}$	Ma Ma s 0 1 0 1 0 1 1 0 1	Link Link Link L.000 L.001 L.001 L.001 L.001 L.001 L.002 L.000 L.0	Adoptable Adoptable IL (m) 123.075 122.836 122.749 122.749 122.749 122.749 122.749	e e Dia (mm) 225 225 225 225 225 225 225 225 225 22
Noda SWO SWO SWO SWO	1.006 e E 1 718 2 718 3 718 4 718 5 718 5 718	 sw08 sW09- asting (m) 142.930 145.480 158.360 216.163 204.356 207.897 	14 HB 14 North (m 725405 725368 725368 725368 725408	400 400 5.380 5.380 3.470 5.680 3.300 1.376 4.959	Manhole Manhole <u>CL</u> (m) 124.500 125.000 125.000 123.600 123.600 123.430	Adoptal Adoptal <u>Manhole</u> Depth (m) 1.425 2.164 2.251 1.425 1.516	ole S ole H Sched Dia (mn 140 140 140 140 140	SW09-HB Headwall Iule a Con m) 0 D0 1 D0 1 D0 1 D0 0 D0 1 D0 0 D0 1 D0 0 D0 0 D0 1 D0 1 D0 0 D0 1 D0 1 D00 1	1400 1400	Ma Ma s 0 1 0 1 0 1 0 1 1 0 1	Link 1.000 1.000 1.001 1.001 1.001 2.000 2.000 2.001 2.001	Adoptable Adoptable IL (m) 123.075 122.836 122.749 122.749 122.749 122.749 122.749 122.084 122.084 122.084	e e Dia (mm) 225 225 225 225 225 225 225 225 225 22

0 1.003 122.005 225

Causewa	y			۲ لا 2	Vetwork: Kezia Ada 24/10/202	Storm Networ nza 24	k			
			Ma	nhole So	<u>hedule</u>					
Node Eastin (m)	ng I)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connection	ns	Link	IL (m)	Dia (mm
SW07 718211	804 72	25397.193	123.430	1.470	1400		1	1.003	121.960	225
							0	1.004	121.960	300
SW08 718210).457 72	25399.507	123.430	1.500	1400		1	1.004	121.930	300
						1	0	1.005	121.930	300
SW09-HB 718221	040 72	25407.390	123.200	1.500	1400	1	1	1.005	121.700	300
		25 44 2 00 4	120.000	0 5 4 0	1 100		0	1.006	121.700	300
neauwaii /18230	1.013 72	25412.994	120.000	0.519	1400	1	T	1.006	119.481	300
			Sim	ulation	<u>Settings</u>					
Rainfa	II Methoo Rainfall I	dology FS Events Sir	R ngular			Analysi Skip Stead	s Spee dv Stat	ed No te x	ormal	
Rainfa	II Methoo Rainfall I FSR F	dology FS Events Sir Region Sco	R ngular otland and	Ireland	Dr	Analysi Skip Stead ain Down Time	s Spee dy Stat e (min	ed No te x s) 24	ormal O	
Rainfa	II Methoo Rainfall I FSR F M5-60	dology FS Events Sir Region Sco (mm) 18	R ngular otland and .300	Ireland	Dr Addi	Analysi Skip Stead ain Down Time tional Storage	s Spee dy Stat e (min (m³/ha	ed No te x s) 24 a) 20	ormal 0 .0	
Rainfa	Il Methoo Rainfall I FSR F M5-60 R Sumn	dology FS Events Sir Region Sco (mm) 18 Ratio-R 0.2 ner CV 1.0	R ngular otland and .300 270 200	Ireland	Dr Addi Cł	Analysi Skip Stead ain Down Time tional Storage Starting Le neck Discharge	s Spee dy Stat e (min (m³/ha evel (n evel (n	ed No te x s) 24 a) 20 n) s) x	ormal 0 .0	
Rainfa	II Methoo Rainfall I FSR F M5-60 R Sumn Win	dology FS Events Sir Region Sco (mm) 18 Ratio-R 0.2 ner CV 1.0 Iter CV 1.0	R ngular otland and .300 270 200 200	Ireland	Dr Addi Cł Ch	Analysi Skip Stead ain Down Time tional Storage Starting Le neck Discharge eck Discharge	s Spee dy Stat e (min (m ³ /ha evel (n e Rate(Volum	ed No te x s) 24 a) 20 n) s) x ne x	ormal 0 .0	
Rainfa	ll Methoo Rainfall I FSR F M5-60 R Sumn Win	dology FS Events Sir Region Sco (mm) 18 Ratio-R 0.2 ner CV 1.0 Iter CV 1.0	R ngular otland and .300 270 270 200 200 Sto	Ireland	Dr Addi Cł Ch ations	Analysi Skip Stead ain Down Time tional Storage Starting Le neck Discharge eck Discharge	s Spee dy Stat e (min (m³/ha evel (n evel (n Rate(Volum	ed No ce x s) 24 a) 20 n) s) x ne x	ormal 0 .0	
Rainfa 15 de	II Methoo Rainfall I FSR F M5-60 R Sumn Win Win	dology FS Events Sir Region Sco 0 (mm) 18 Ratio-R 0.2 ner CV 1.0 Iter CV 1.0 Iter CV 360	R ngular otland and .300 270 000 000 500 Sto	Ireland orm Dur 960	Dr Addi Cł Ch ations) 21	Analysi Skip Stead ain Down Time tional Storage Starting Le neck Discharge eck Discharge	s Spee dy Stat e (min (m ³ /hi evel (n Rate(Volum 72	ed No se x s) 24 a) 20 n) s) x se x	ormal 0 .0 10080	
Rainfa 15 6 30 1	II Methoo Rainfall I FSR F M5-60 R Sumn Win 60 1 20 2	dologyFSIEventsSirRegionSco0 (mm)18Ratio-R0.2ner CV1.0iter CV1.0180360240480	R ngular otland and .300 270 000 000 500 500 500 500 500 500 500 5	Ireland orm Dur 960 144	Dr Addi Cr Ch ations) 21 0 28	Analysi Skip Stead ain Down Time tional Storage Starting Le neck Discharge eck Discharge 60 4320 80 5760	s Spee dy Stat e (min (m³/ha evel (n e Rate(Volum 72 86	ed No ce x s) 24 a) 20 n) s) x ne x co co co co co co co co co co co co co	ormal 0 .0 10080	
Rainfa 15 6 30 1	II Method Rainfall I FSR F M5-60 R Sumn Win 60 1 .20 2 Return (yea	dology FS Events Sir Region Sca 0 (mm) 18 Ratio-R 0.2 ner CV 1.0 Iter CV 1.0 180 360 240 480 Period Cl ars)	R ngular otland and .300 270 000 000 500 500 500 500 500 500 500 5	Ireland orm Dur 960 144 nge Ad	Dr Addi Cł Ch ations) 21 0 28 dditional (A %)	Analysi Skip Stead ain Down Time tional Storage Starting Le neck Discharge eck Discharge 60 4320 80 5760 Area Additie	s Spee dy Stat e (min (m³/ha evel (n e Rate(Volum 72 86 onal F Q %)	ed No ee x s) 24 a) 20 n) s) x se x 200 640	ormal 0 .0 10080	
Rainfa 15 6 30 1	II Method Rainfall I FSR F M5-60 R Sumn Win 60 1 .20 2 Return (yea	dology FS Events Sir Region Sca 0 (mm) 18 Ratio-R 0.2 ner CV 1.0 Iter CV 1.0 Iter CV 1.0 Reriod Cl ars) 2 30	R ngular otland and .300 270 000 000 000 00 0 0 0 0 0 0 0 0 0	Ireland Drm Dur 960 144 nge Ao 20 20 20	Dr Addi Cł Ch ations 0 21 0 28 dditional (A %)	Analysi Skip Stead ain Down Time Starting Le Starting Le eck Discharge eck Discharge 60 4320 80 5760 Area Additie (0 0	s Spee dy Stat e (min (m³/ha evel (n e Rate(Volum 72 86 onal F Q %)	ed No ee x s) 24 a) 20 n) s) x se x 200 k40 low 0 0	ormal 0 .0 10080	
Rainfa 15 (30 1	II Method Rainfall I FSR F M5-60 R Sumn Win 60 1 .20 2 Return (yea	dology FS Events Sir Region Sco 0 (mm) 18 Ratio-R 0.2 ner CV 1.0 Iter CV 1.0 Iter CV 1.0 Reriod 240 Period Cl ars) 2 30 100	R ngular otland and .300 270 000 000 Sto 0 600 0 720 limate Char (CC %)	Ireland 960 144 nge Ao 20 20 20	Dr Addi Cł Ch ations 0 21 0 28 dditional (A %)	Analysi Skip Stead ain Down Time Starting Le beck Discharge eck Discharge 60 4320 80 5760 Area Addition 0 0 0	s Spee dy Stat e (min (m ³ /h: evel (n Rate(Volum 72 86 onal F Q %)	ed No ee x s) 24 a) 20 n) s) x ie x 200 ie x 200 ie x 200 ie x 200 ie x 200 ie x 200 ie x 200 ie x 200 ie x 20 n) 20 20 n) 20 n) 20 20 n) 20 20 20 20 20 20 20 20 20 20 20 20 20	ormal 0 .0 10080	
Rainfa 15 (30 1	II Method Rainfall I FSR F M5-60 R Sumn Win 60 1 .20 2 Return (yea	dology FS Events Sir Region Sca 0 (mm) 18 Ratio-R 0.2 ner CV 1.0 Iter CV 1.0 I	R ngular otland and .300 270 000 000 000 00 0 0 0 0 0 0 0 0 0	Ireland 960 144 nge Ad 20 20 20 20 20	Dr Addi Cł Ch ations) 21 0 28 dditional (A %)	Analysi Skip Stead ain Down Time tional Storage Starting Le neck Discharge eck Discharge 60 4320 80 5760 Area Additio 0 0 0 0 0 0 0 0 0	s Spee dy Stat e (min (m³/ha evel (n Rate(Volum 72 86 onal F Q %)	ed No ee x s) 24 a) 20 n) x e	ormal 0 .0 10080	
Rainfa 15 6 30 1	III Method Rainfall I FSR F M5-60 R Sumn Win 60 1 .20 2 Return (yea	dology FS Events Sir Region Sco 0 (mm) 18 Ratio-R 0.2 ner CV 1.0 tter CV 1.0 100 Period Cl ars) 2 30 100 <u>Node</u>	R ngular otland and .300 270 000 000 00 0 0 0 0 0 0 0 0 0 0 0	Ireland orm Dur 960 144 nge Ao 20 20 20 20 20 20 20 20 20 20	Dr Addi Cr Ch ations) 21 0 28 dditional (A %) ydro-Bra Obj	Analysi Skip Stead ain Down Time tional Storage Starting Le neck Discharge eck Discharge 60 4320 80 5760 Area Additio 0 0 0 ke® Control ective (HE) M	s Spee dy Stat e (min (m³/h; evel (n Rate(Volum 72 86 onal F Q %)	ed No ee x s) 24 a) 20 n) x e x s) x ie x 000 640 0 0 0 0 0 0 0 0	ormal 0 .0 10080	ge
Rainfa 15 6 30 1 Replaces Down Inve	Il Method Rainfall I FSR F M5-60 R Sumn Win 60 1 .20 2 Return (yea Flap Va nstream L	dology FS Events Sir Region Sca 0 (mm) 18 Ratio-R 0.2 ner CV 1.0 100 100 100 Node 100 Node 101 121.7	R ngular otland and .300 270 000 000 500 00 0 100 0 0 0 0 0 0 0 0 0	Ireland orm Dur 960 144 nge Ac 20 20 20 20 20 20 20 20 20 20	Dr Addi Cf Ch ations) 21 0 28 dditional (A %) ydro-Bra Obj Sump Ava roduct Nu	Analysi Skip Stead ain Down Time tional Storage Starting Le neck Discharge eck Discharge 60 4320 80 5760 Area Additi 0 0 0 0 ke [®] Control ective (HE) M nilable √ umber CTI-SI	s Spee dy Stat e (min (m³/ha evel (n e Rate(Volum 72 86 onal F Q %)	ed No ee x s) 24 a) 20 n) x e	ormal 0 .0 10080 tream stora 0-1000-200	ge
Rainfa 15 (30 1 Replaces Down Inve Desig	II Method Rainfall I FSR F M5-60 R Sumn Win 60 1 .20 2 Return (yea Flap Va nstream L ert Level (m Depth (dology FSI Events Sir Region Sco 0 (mm) 18 Ratio-R 0.2 ner CV 1.0 Iter CV 1.0 Iter CV 1.0 Ratio-R 0.2 Iter CV 1.0 Iter CV 1.0 Ratio-R 0.2 Iter CV 1.0 Iter CV 1	R ngular otland and .300 270 000 000 Sta 0 600 0 720 limate Char (CC %)	Ireland Prm Dur 960 144 nge Au 20 20 20 20 20 20 20 20 20 20	Dr Addi Cł Ch ations 0 21 0 28 dditional (A %) <u>ydro-Bra</u> Obj Sump Ava roduct Nu t Diameto	Analysi Skip Stead ain Down Time tional Storage Starting Le neck Discharge eck Discharge eck Discharge 60 4320 80 5760 Area Additio 0 0 0 ke [®] Control ective (HE) M nilable √ umber CTL-Sl er (m) 0.100	s Spee dy Stat e (min (m³/h; evel (n Rate(Volum 72 86 onal F Q %)	ed No ee x s) 24 a) 20 n) s) x ie x 000 640 low 0 0 0 0 se upst 57-2000	ormal 0 .0 10080 tream stora 0-1000-200	ge 00
Replaces Down Inve Desig Desig	II Method Rainfall I FSR F M5-60 R Sumn Win 60 1 20 2 Return (yea Flap Va nstream L ert Level (gn Flow ()	dology FSI Events Sir Region Sco 0 (mm) 18 Ratio-R 0.2 ner CV 1.0 L80 360 240 480 Period Cl ars) 2 30 100 <u>Node</u> Node Node Node (m) 121.7 (m) 1.000 I/s) 2.0	R ngular otland and .300 270 000 000 Sto 00 720 limate Char (CC %)	Ireland Drm Dur 960 144 nge Ac 20 20 20 20 Dnline H S Pr in Outle n Node I	Dr Addi Ch Ch ations 21 0 28 dditional (A %) ydro-Bra Obj Sump Ava oduct Nu t Diameter	Analysi Skip Stead ain Down Time tional Storage Starting Le neck Discharge eck Discharge eck Discharge 60 4320 80 5760 Area Additio (0 0 0 ke [®] Control ective (HE) M nilable √ imber CTL-SI er (m) 0.100 (mm) 1200	s Spee dy Stat e (min (m³/h; evel (n Rate(Volum 72 86 onal F Q %)	ed No ee x s) 24 a) 20 n) s) x ie x 200 ie x 200 ie x 200 ie x 200 ie x 200 ie x 200 ie x 57-2000	ormal 0 .0 10080 tream stora 0-1000-200	ge 00
Replaces Down Inve Desig Desig	Il Method Rainfall I FSR F M5-60 R Sumn Win 60 1 20 2 Return (yea Flap Va nstream L ert Level (gn Flow ()	dology FS Events Sir Region Sco 0 (mm) 18 Ratio-R 0.2 ner CV 1.0 180 360 240 480 Period Cl ars) 2 30 100 Node Node Node	R ngular otland and .300 270 000 000 Sta 0 600 0 720 limate Char (CC %) SW09-HB (00 Min es SW08 Dep	Ireland 960 144 nge Ad 20 20 20 20 20 20 20 20 20 20 20 20 20	Dr Addi Cł Ch ations 0 21 0 28 dditional (A %) ydro-Bra Obj Sump Ava oduct Nu t Diameter Diameter a Storage	Analysi Skip Stead ain Down Time tional Storage Starting Le neck Discharge eck Discharge eck Discharge 60 4320 80 5760 Area Additi 0 0 0 ke [®] Control ective (HE) M nilable √ imber CTL-SI er (m) 0.100 (mm) 1200	s Spee dy Stat e (min (m³/h; evel (n Rate(Volum 72 86 onal F Q %)	ed No ee x s) 24 a) 20 n) s) x ie x 200 ie x 200 ie x 200 ie x 200 ie x 200 ie x 200 ie x 57-200	ormal 0 .0 10080 tream stora 0-1000-200	ge 00

Causeway	Remco Ltd	t/a Malone	File Ne Ke: 24,	e: 2024-06-1 twork: Storr zia Adanza /10/2024	7 Flow.pfd n Network		Page 4	
Depth (m) 0.000	Area Inf A (m²) (m 100.0	Area Depth l ²) (m) 0.0 0.760	Area (m²) 100.0	Inf Area (m²) 0.0	Depth (m) 0.761	Area (m²) 0.0	Inf Area (m²) 0.0	

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute summer	SW01	10	123.125	0.050	4.6	0.0893	0.0000	ОК
15 minute summer	SW02	10	122.909	0.073	9.1	0.1252	0.0000	ОК
15 minute summer	SW03	10	122.820	0.071	13.5	0.1205	0.0000	ОК
15 minute summer	SW04	10	122.226	0.051	4.6	0.0908	0.0000	ОК
15 minute summer	SW05	10	122.146	0.062	9.2	0.1109	0.0000	ОК
15 minute summer	SW06	10	122.142	0.137	26.7	0.2451	0.0000	ОК
15 minute winter	SW07	8	122.128	0.168	28.1	0.2998	0.0000	ОК
240 minute summer	SW08	172	122.109	0.179	12.8	18.2095	0.0000	ОК
240 minute summer	SW09-HB	160	122.115	0.415	9.7	0.6384	0.0000	SURCHARGED
15 minute summer	Headwall	1	119.481	0.000	2.0	0.0000	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute summer	SW01	1.000	SW02	4.5	0.516	0.109	0.3282	,
15 minute summer	SW02	1.001	SW03	8.9	0.812	0.210	0.1427	
15 minute summer	SW03	1.002	SW06	12.9	0.736	0.218	1.0257	
15 minute summer	SW04	2.000	SW05	4.6	0.590	0.109	0.1070	
15 minute summer	SW05	2.001	SW06	9.2	0.543	0.170	0.1254	
15 minute summer	SW06	1.003	SW07	26.3	1.144	0.506	0.1091	
15 minute winter	SW07	1.004	SW08	28.4	1.878	0.241	0.0555	
240 minute summer	SW08	1.005	SW09-HB	9.7	0.251	0.066	0.7545	
240 minute summer	SW08	Infiltration		0.0				
240 minute summer	SW09-HB	Hydro-Brake®	Headwall	2.0				38.1

File: 2024-06-17 Flow.pfd Network: Storm Network Kezia Adanza

24/10/2024

Page 6

Results for 30 year +20% CC Critical Storm Duration. Lowest mass balance: 99.80%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status	
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)		
15 minute summer	SW01	10	123.143	0.068	8.5	0.1222	0.0000	ОК	
15 minute summer	SW02	10	122.941	0.105	16.9	0.1788	0.0000	ОК	
15 minute summer	SW03	10	122.849	0.100	25.2	0.1701	0.0000	ОК	
240 minute winter	SW04	228	122.318	0.143	1.7	0.2563	0.0000	ОК	
240 minute winter	SW05	224	122.317	0.233	3.4	0.4132	0.0000	SURCHARGED	
360 minute winter	SW06	296	122.317	0.312	7.4	0.5590	0.0000	SURCHARGED	
360 minute winter	SW07	312	122.317	0.357	8.3	0.6368	0.0000	SURCHARGED	
360 minute winter	SW08	296	122.316	0.386	9.3	39.1834	0.0000	SURCHARGED	
240 minute winter	SW09-HB	232	122.316	0.616	8.7	0.9477	0.0000	SURCHARGED	
15 minute summer	Headwall	1	119.481	0.000	2.0	0.0000	0.0000	ОК	

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute summer	SW01	1.000	SW02	8.4	0.602	0.203	0.5224	
15 minute summer	SW02	1.001	SW03	16.7	0.949	0.394	0.2287	
15 minute summer	SW03	1.002	SW06	24.6	0.856	0.414	1.5732	
240 minute winter	SW04	2.000	SW05	1.7	0.445	0.040	0.4542	
240 minute winter	SW05	2.001	SW06	3.4	0.400	0.062	0.2915	
360 minute winter	SW06	1.003	SW07	7.0	0.700	0.134	0.1790	
360 minute winter	SW07	1.004	SW08	8.3	0.848	0.071	0.1885	
360 minute winter	SW08	1.005	SW09-HB	9.1	0.239	0.062	0.9293	
360 minute winter	SW08	Infiltration		0.0				
240 minute winter	SW09-HB	Hydro-Brake®	Headwall	2.0				47.6

Node Event	US Nodo	Peak	Level	Depth	Inflow	Node	Flood	Status	
	Noue	(mins)	(m)	(m)	(1/5)	voi (m.)	(111)		
15 minute summer	SW01	10	123.154	0.078	11.1	0.1406	0.0000	ОК	
15 minute summer	SW02	10	122.960	0.124	22.1	0.2111	0.0000	OK	
15 minute summer	SW03	10	122.867	0.117	33.0	0.1996	0.0000	OK	
360 minute winter	SW04	344	122.470	0.295	1.6	0.5286	0.0000	SURCHARGED	
360 minute winter	SW05	344	122.469	0.385	3.2	0.6833	0.0000	SURCHARGED	
360 minute winter	SW06	344	122.468	0.462	9.4	0.8287	0.0000	SURCHARGED	
360 minute winter	SW07	352	122.467	0.506	10.2	0.9035	0.0000	SURCHARGED	
360 minute winter	SW08	344	122.466	0.535	10.4	54.3721	0.0000	SURCHARGED	
360 minute winter	SW09-HB	344	122.465	0.765	8.6	1.1779	0.0000	SURCHARGED	
15 minute summer	Headwall	1	119.481	0.000	2.0	0.0000	0.0000	ОК	

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(l/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute summer	SW01	1.000	SW02	11.1	0.640	0.265	0.6412	
15 minute summer	SW02	1.001	SW03	21.9	1.010	0.516	0.2816	
15 minute summer	SW03	1.002	SW06	32.4	0.937	0.545	1.7320	
360 minute winter	SW04	2.000	SW05	1.6	0.419	0.038	0.5443	
360 minute winter	SW05	2.001	SW06	3.0	0.383	0.056	0.2915	
360 minute winter	SW06	1.003	SW07	8.6	0.688	0.166	0.1790	
360 minute winter	SW07	1.004	SW08	10.1	0.874	0.086	0.1885	
360 minute winter	SW08	1.005	SW09-HB	8.6	0.283	0.058	0.9293	
360 minute winter	SW08	Infiltration		0.0				
360 minute winter	SW09-HB	Hydro-Brake®	Headwall	2.0				58.9

APPENDIX D – FOUL WATER PIPE NETWORK CALCULATIONS

		Remco	Ltd t/a M	alone	Fil	e: 2024-0	6-17 Flow.	pfd	Page 1	
					Ne	etwork: Fo	ul Networ	k		
Lausev	vay				Ке	zia Adanz	а			
					24	/10/2024				
						//				
				<u>[</u>	Design Sett	<u>ings</u>				
	Fre	quency c	of use (kD	U) 0.5	0	Minimu	um Velocit	y (m/s)	0.75	
Flow	per dwe	elling per	day (l/d	ay) 446	5		Connectio	on Type	Level Inver	rts
	Do	mestic F	low (l/s/l	na) 0.0	Min	imum Bac	kdrop Hei	ght (m)	0.500	
	Inc	dustrial F	low (l/s/ł	na) 0.0		Preferred	Cover Dep	oth (m)	1.200	
		Additior	nal Flow (%) 10	Inc	clude Inte	rmediate (Ground	\checkmark	
					<u>Nodes</u>					
			Name	Units	Cover	Diamete	r Depth			
					Level (m)	(mm)	(m)			
			FW01	6.0	124.000	1200) 1.425			
			FW/02	6.0	124 750	1200) 2,822			
			F\N/02	6.0 6.0	125 /00	1200	2.052			
				0.0	125.400	1200				
				b.U	125.400	1200	3.988			
			FW05	6.0	125.300	1200	3.952			
			FW06	6.0	124.000	1200	2.932			
			FW07		124.000	1200	2.985			
					<u>Links</u>					
	Name	US	DS	Length	US IL	DS IL	Fall	Slope	Dia	
		Node	Node	(m)	(m)	(m)	(m)	(1:X)	(mm)	
	1.000	FW01	FW02	39.431	122.575	121.91	8 0.657	60.0	225	
	1 001	FW/02	FW03	25 314	121 918	121 49	6 0 4 2 2	60.0	225	
	1 002	E/V/02	F\//0/	5 058	121.010	171 /1	2 0.921	60.0	225	
	1.002			2.020	121.490	121.41	0.004	60.0	225	
	1.005			3.002	121.412	121.54		150.0	225	
	1.004	FWU5		41.966	121.348	121.00		150.0	225	
	1.005	FWU6	FVVU7	8.010	121.068	121.01	5 0.053	150.0	225	
			Nam	e Vel	Flow	US	DS			
				(m/s	s) (l/s)	Depth (m)	Depth (m)			
			1.00	0 1.48	3 1.3	1.200	2.607			
			1 00	1 1 4 8	3 19	2 607	3 679			
			1 00	 7 1/10	2 7 2	2.007	3 762			
			1.00	2 1.40 2 1.40	5 2.5 5 7 7	3.0/9	3.705 2 7 7 7			
			1.00	J 1.48	S 2./	5./05	3.121 2.707			
			1.00	4 0.93	o 3.0	3./2/	2.707			
			1.00	5 0.93	ь 3.3	2.707	2.760			
				<u>Pi</u>	peline Sch	<u>edule</u>				
Link I	ength	Slope	Dia	US CL	US IL	US Dep	oth DS	CL D	SIL DS	Depth
	(m)	(1:X)	(mm)	(m)	(m)	(m)	(m) ((m)	(m)
1.000	39.431	60.0	225	124.000	122.575	1.2	00 124.7	750 12	1.918	2.607
1.001 2	25.314	60.0	225	124.750	121.918	2.6	07 125.4	400 12	1.496	3.679
1.002	5.058	60.0	225	125.400	121.496	3.6	79 125 4	400 12	1.412	3.763
1.002	3.862	60.0	225	125.400	121.412	3.7	63 125.3	300 12	1.348	3.727
		с <u>-</u> ,				D 2	D'-	N - J		
Lin	ік U ⊾-	S Di	a No	ode	MH	DS	Dia (mm)	Node	MH	
		ue (mi	11) IY	/pe	iype	INDO	(mm) 1200	iype	iype	_
1.0	UU FW	12	uu Mai	nole A	Adoptable	FW02	1200 N	viannole	Adoptable	2
1.0	U1 FW	02 12	uu Mai	nhole A	Adoptable	FW03	1200 N	/lanhole	Adoptable	e

FW04

FW05

1200

1200

Manhole

Manhole

Adoptable

Adoptable

Adoptable

Adoptable

1.002

1.003

FW03

FW04

1200

1200

Manhole

Manhole

Cau	seway	Remco Ltd t	/a Malone		File: 202 Network Kezia Ad 24/10/2	4-06-17 Flow : Foul Netwo anza 024	.pfd rk	Pa	ige 2	
			<u>P</u>	Pipeline S	chedule					
1 1	ink Length (m) .004 41.966 .005 8.010	SlopeDi(1:X)(mr150.02150.02	a US CL m) (m) 25 125.300 25 124.000	US (m 0 121.3 0 121.0	IL US) 848 968	Depth DS m) (n 3.727 124. 2.707 124.	CL n) 000 000	DS IL (m) 121.068 121.01	DS Dep (m) 8 2.70 5 2.70	th 07 60
	Link U No 1.004 FV 1.005 FV	JS Dia ode (mm) V05 1200 V06 1200	Node Type Manhole Manhole	MH Type Adoptab Adoptab	DS Nod ole FWC ole FWC	Dia e (mm) 6 1200 M 7 1200 M	Node Type Manho Manho	e ole Ad ole Ad	MH Type optable optable	
			N	<u>lanhole </u>	<u>Schedule</u>					
Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connectio	ons	Link	IL (m)	Dia (mm)
FW01	718205.408	725390.909	124.000	1.425	1200	0 K				
FW02	718171.133	725371.414	124.750	2.832	1200		0	1.000	122.575 121.918	225 225
FW03	718148.712	725359.663	3 125.400	3.904	1200		0	1.001 1.001	121.918 121.496	225 225
						•	0	1.002	121.496	225
FW04	718143.750	725360.642	125.400	3.988	1200	⁰ ~ 1	1	1.002	121.412	225
FW05	718141.143	725363.491	125.300	3.952	1200	•	0	1.003 1.003	121.412 121.348	225 225
FW06	718138.954	725405.400) 124.000	2.932	1200		0	1.004 1.004	121.348 121.068	225 225
	710100.055	705 404 000	404.000		4222	0 ← ()	0	1.005	121.068	225
FW07	/18130.955	725404.982	2 124.000	2.985	1200		1	1.005	121.015	225

APPENDIX E – MAINTENANCE AND MANAGEMENT PLAN

Maintenance and Management Plan

Project	NDFA Social Housing Bundles 4 & 5	Analysed by	Kezia Adanza
Job no.	23006	Date	July 2024

SuDS Component	Maintenance Responsibility	Maintenance Schedule	Required Action	Typical Frequency
Permeable Paving	PPP management company for 25 years then	Regular Maintenance	Brushing (Standard cosmetic sweep over whole surface) Visual check on inspection chambers and removal of debris.	Once a year or reduced frequency as required
		Occasional Maintenance	Removal of weeds or management using glyphosate or other suitable weed killer.	As required – once a year on less frequently used pavements
Dublin City Council		Remedial Action	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and replace lost jointing materials.	As required
			Remediate any landscaping which has been raised within the level of the paving.	As required
			High pressure jetting of permeable pavement underdrains in the event of blockages. Inspections chambers provided to facilitate this work.	As required
			Rehabilitation of surface and upper sub-structure by remedial sweeping.	Every 10 to 15 years or as required (if performance is reduced due to significant flooding)
		Monitoring	Initial Inspection	Monthly for three months after installation
			Inspect for evidence of poor operation and/ or weed growth – if required, take remedial action,	Every 3 months, 48 hours after large storms in first six months

		Inspect slit accumulation rates and establish appropriate brushing frequencies.	Annually
		Monitor inspection chambers	Annually

Maintenance and Management Plan

Project	NDFA Social Housing Bundles 4 & 5	Analysed by	Kezia Adanza
Job no.	23006	Date	July 2024

SuDS Component	Maintenance Responsibility	Maintenance Schedule	Required Action	Typical Frequency
Bioretention Areas	PPP management company for 25 years	Regular Inspections	Inspect infiltration surfaces for silting and ponding, record de- watering time of the facility and assess standing water levels in underdrain to determine if maintenance is necessary.	Quarterly
	then		Check operation of underdrains by inspection of flows after rain.	Annually
Dublin City Council			Assess plants for disease infection, poor growth, invasive species etc. and replace as necessary.	Quarterly
			Inspect inlets and outlets for blockage.	Quarterly
		Regular Maintenance	Remove litter, surface debris and weeds.	Quarterly (or more frequently for tidiness or aesthetic reasons)
			Replace any plants to maintain plant density.	Quarterly to bi-annually
			Remove sediment, litter and debris build-up from around inlets.	As required
		Occasional Maintenance	Infill any holes or scour in the filter medium, improve erosion protection if required.	As required
			Repair minor accumulations of silt by raking away surface mulch, scarifying surface of medium and replacing mulch.	As required
		Remedial Actions	Remove and replace filter medium and vegetation.	As required but likely to be > 20 years

Maintenance and Management Plan					
Project	NDFA Social Housing Bundles 4 & 5	Analysed by	Kezia Adanza		
Job no.	23006	Date	November 2023		

SuDS Component	Maintenance Responsibility	Maintenance Schedule	Required Action	Typical Frequency
Attenuation Storage	PPP management company for 25 years	Regular Inspections	Inspect infiltration surfaces for silting, record de-watering time of the facility and assess standing water levels in underdrain to determine if maintenance is necessary.	Quarterly
	then Dun Laoghaire Rathdown		Check operation of underdrains by inspection of flows after rain.	Annually
			Inspect inlets and outlets for blockage.	Quarterly
		Regular Maintenance	Remove sediment, litter and debris build-up from around inlets.	As required